你学的数学可能是假的
上QQ阅读APP看书,第一时间看更新

用估数代替数数

当我们比较两组数量时,会出现两个有意思的现象。请观察下图里左边和右边的点。

哪边的点更多?经过你的比较,下图里哪一边的点更多,是左边还是右边?

第一幅图相对容易些。左边明显比右边更多:左边有15个点,右边只有11个。第二幅图的情况更困难一些。很可能你会猜两边点数相同,但这肯定不对。在这幅图里,右边比左边多四个点。不过,当比例为50∶54时,我们几乎无法感知其中的差异。这就是心理学家所说的“范畴大小”效应。当我们比较数量时,数量越大,反应时间就越长。

为了识别第二幅图里左右两边的差异,点数的差距必须进一步加大,例如50∶65。科学家们称之为“距离大小”效应。两个数值相距越大,我们就越容易区分它们。

令人意外的是,除了点数,印刷体数字也会让我们产生这种效应。1967年,有两位心理学家罗伯特·莫耶尔(Robert Moyer)和托马斯·兰道尔(Thomas Landauer)对此进行了实验。他们向几个成年测试对象展示了一对大小不同的个位数,如3和5。测试对象必须马上判断两个数字中哪一个更大,并按下相应按钮。实验者不断重复地给测试对象看新数字对,并持续监测他们的反应时间。

你觉得实验结果如何?他们对所有数字对的反应时间都一样?至少我们原本的预期是这样,毕竟我们都知道9大于8,也大于2,因此,在9∶8和9∶2这两种情况下的反应时间肯定是相同的。

但事实如何呢?当两个数字相差较大时,测试对象需要约0.5秒做出决定。他们在面对9∶2这种组合时几乎不会犯错,但当他们在面对5∶6这种相邻数字对时,结果完全不同,他们不仅经常犯错,平均反应时间也比9∶2这种数字对的反应时间长了0.1秒。