第四节 主要研究和应用方向
从众多文献中,通过归纳可见基于大数据研究经济的直接目的可以大致分为:优化传统经济指标或构建其先行指标、构建新的经济预测指标、建立经济变量间的联系,其意在借助传统上不易或无法处理的或曾经被忽视的海量非结构化数据,在数据间通过相关性分析发现数据间的联系,进而揭示更加深刻意义上的经济联系。因此,虽然本质上一样,但目前基于大数据方法研究经济主要分两个方向:经济预测和验证经济理论。
从研究文献的内容来看,目前大多数经济学家们倾向于主动选择、构造数据集,从中进行数据分析以解释或发现经济现象,并在模型得到验证后在数据更新较快时进行现时预测。无论是前文提到的“十亿价格计划”“收费站指数”,还是“房价预测模型”,都遵循同样的基本思路。通过对传统意义上难以甚至无法获得的数据,构建经济模型是这个方向研究的重点和关键,和实时更新的数据一起构成了基于大数据方法预测经济的独特优势。基于大数据方法的经济预测大幅缩短了预测周期,现时预测是传统方法难以有效实现的,这对政府、机构、企业及时、准确掌握经济运行情况、制定经济政策和做出企业决策具有重要意义,政府可以根据国民经济运行情况及预测及时出台相关刺激或抑制政策,企业可以根据经济预测提前布局生产经营。由于大数据时代计算、网络技术的进步,各类数据、行为、现象均被记录,数据的触角极大增加,如何从中挖掘出具有经济意义的模型,特别是从传统方法上难以获得数据、经济人行为上获取有用信息,一般的原则是从经济学的基本原理出发,通过增加或者调整经济变量体现大数据的存在,如传统上对房价的研究主要体现在土地供给、新增投资、房屋供求量、货币政策等因素上,基于大数据的方法则从传统方法很难获取的用户行为出发,考虑房价和相关搜索之间的关系,增加了用户的相关搜索量作为一个经济变量,进而预测房价。研究股市波动时也把有关股市的搜索、媒体的情感等传统上难以量化的指标作为明确的经济变量加以分析。因此,基于大数据研究经济的方法在很多方面不是对传统经济学研究方法的颠覆,它更是一个对传统研究方法的补充。
在验证经济理论方面,由于大数据包罗万象,可以微观到每个用户的行为、使用留下的痕迹、每次电子商务购买的交易、每次网站的点击等传统意义上无法观测或统计的数据,从而可以使经济学的研究更加深入,海量的数据也为验证、发现经济理论提供了实证基石。例如,通过分析就业网站提供的职位信息、用户对求职相关的搜索等数据可以从微观上分析失业者在寻求就业时的影响因素,对相关社交媒体信息和商品销售的分析可以从行为经济学上研究消费者购买的影响因素。历史上的重大发明、创新很多都是从数据出发,如菲利普斯从失业和经济增长的数据中发现菲利普斯曲线,库兹涅夫从收入和分配数据中发现库兹涅夫曲线,而大数据包含了很多传统意义上无法获取或统计的行为、心理数据,以及由之构成的可清洗解剖的宏观数据,大数据时代的全方位、海量数据也是经济学家发现新的经济理论、规则的无穷宝藏,对经济学的发展有重要意义。