参考文献
[1]A survey on techniques to handle face recognition challenges: occlusion,single sample per subject and expression[J]. Artificial Intelligence Review,2019, (52): 949-979.
[2]Wang M, Deng W H. Deep Face Recognition: A Survey[J]. arXiv, 2018:1804.06655.
[3]Guo G, Zhang N. A survey on deep learning based face recognition[J].Computer Vision and Image Understanding, 2019, (189).
[4]走近深度学习人脸识别[EB/OL]. 2020-03-01. https://www.sohu.com/a/227266768_500659.
[5]人脸识别方向系列论文[EB/OL]. 2020-03-01. https://blog.csdn.net/ code_mart/article/details/100120799.
[6]人脸识别网络模型、损失函数、数据集相关总结[EB/OL]. 2020-03-01.https://www.jianshu.com/p/e57205edc364.
[7]Sun Y, Wang X G, Tang X O. Deep Learning Face Representation from Predicting 10000Classes[C]. CVPR 2014, 2014: 1891-1898.
[8]Sun Y, Wang X G, Tang X O. Deeply Learned Face Representations are Sparse, Selective, and Robust[C]. CVPR 2015, 2015: 2892-2900.
[9]DeepID 1, DeepID 2[EB/OL]. 2020-03-01. https://www.cnblogs.com/venus024/p/5632243.html.
[10]DeepID 1, DeepID 2, DeepID 2+, DeepID 3[EB/OL]. 2020-03-01. https://blog.csdn. net/yuanchhene ducn/article/ details/51034463.
[11]Implementation of DeepID 1using tensorflow[EB/OL]. 2020-03-01. https://github. com/jinze1994/ DeepID 1.
[12]Practise of DeepID for Face Classification[EB/OL]. 2020-03-01. https://github.com/ stdcoutzyx/ DeepID_ FaceClassify.
[13]Schroff F, Kalenichenko D, Philbin J. FaceNet: A unified embedding for face recognition and clustering[C]. CVPR 2015, 2015: 815-823.
[14]人脸识别-FaceNet[EB/OL]. 2020-03-01. https://blog.csdn.net/baidu_27643275/article/details/79222206.
[15]FaceNet 官方源代码[EB/OL]. 2020-03-01. https://github.com/davidsandberg/facenet.
[16]Siamese(孪生)网络[EB/OL]. 2020-03-01. https://blog.csdn.net/qq_15192373/article/details/78404761.
[17]Zagoruyko S, Komodakis N. Learning to Compare Image Patches Via Convolutional Neural Nnetworks[C]. CVPR 2015, 2015: 4353-4361.
[18]Siamese network 孪生神经网络——一个简单神奇的结构[EB/OL]. 2020-03-01.https://www. jianshu. com/p/92d7f6eaacf5.
[19]Siamese and triplet networks with online pair/triplet mining in PyTorch[EB/OL].2020-03-01.https://github.com/adambielski/siamese-triplet.
[20]Deng J K, Guo J, Xue N N, et al. ArcFace: Additive Angular Margin Loss for Deep Face Recognition[C]. CVPR 2019, 2019: 4690-4699.
[21]A-Softmax 的总结及与L-Softmax 的对比[EB/OL]. 2020-03-01. https://www.cnblogs.com/heguanyou/p/7503025.html.
[22]度量学习中损失函数的学习与深入理解[EB/OL]. 2020-03-01. https://www.icode9.com/content-4-252842.html.
[23]ArcFace 算法笔记[EB/OL]. 2020-03-01. https://blog.csdn.net/u014380165/article/details/80645489.
[24]ArcFace 解析[EB/OL]. 2020-03-01. https://zhuanlan.zhihu.com/p/76541084.
[25]人脸识别:《Arcface》论文详解[EB/OL]. 2020-03-01. https://blog.csdn.net/shentanyue/article/details/82109580.
[26]ArcFace 与人脸识别三要素[EB/OL]. 2020-03-01. https://blog.csdn.net/yiran103/article/details/83684613.
[27]Pytorch0.4.1codes for InsightFace[EB/OL]. 2020-03-01. https://github.com/TreB1eN/InsightFace_Pytorch.
[28]SphereFace, CosFace, ArcFace[EB/OL]. 2020-03-01. https://louishsu.xyz/2019/07/13/SphereFace-CosFace-ArcFace/.
[29]论文阅读之ArcFace[EB/OL]. 2020-03-01. https://blog.csdn.net/Wuzebiao2016/article/details/81839452.
[30]深度人脸识别综述[EB/OL]. 2020-03-01. https://www.cnblogs.com/CSLaker/p/10537749.html.