上QQ阅读APP看书,第一时间看更新
三、 数据无法告诉我们什么?
数据模型,就像人类一样,它们总是倾向于根据最可用的信息来做出判断。但是,有时你所缺失的数据往往会像你所拥有的数据一样影响你的决策。我们通常将这种类型的可用性偏差与人类决策联系起来,但人类设计者往往将这种偏差传递给自动化系统。
例如,在金融业中,那些拥有大量信贷历史的人往往比那些没有信贷历史的人更容易获得信贷。后者通常被称为“瘦档案”客户,他们发现自己很难买车,很难租赁房屋,也很难申请到信用卡。 (我们中的一员,一位名叫格雷格的同事,在海外生活15年后回到美国时,就曾亲身经历了这个问题)。
然而,缺少信贷历史并不必然表明信用风险很高。而信贷公司最终往往仅仅因为缺乏相关数据而放弃潜在的盈利客户。最近,益百利公司开始通过应用Boost程序来解决这一难题,该程序通过查询消费者的日常支付活动来使消费者获得信用评分,比如定期的电信充值和公共事业支付等等。迄今为止,已有数百万人在该程序上登记注册了。
因此,要问一问你的数据模型可能遗漏哪些方面,这个问题是极其重要的。如果你正在管理你所测量的数据,你就要确保你所测得的数据真实地反映了现实世界,而不只是一些最容易收集的僵死的数据。