石墨烯基金属硫化物复合光催化材料
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

参考文献

[1] Fujishima A, Honda K. Electrochemieal photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 38-45.

[2] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension[J]. Bull Environ Contam, Toxieol,1976,16:697-701.

[3] Frank S N, Bard A J.Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 Powder[J]. J.Am.Chem.Soc., 1977, 99:303-304.

[4] Hoffmann M R, Martin S T, Choi W, Bahnemannt D W. Environmental applications of semiconductor photoeatalysis[J]. Chem.Rev., 1995, 95:69-96.

[5] Fujishima A, Rao T N, Tryk D A.Titanium dioxide photocatalysis[J]. J. Photochem. Photobiol. C: Photochem. Rev.,2000, 1:1-21.

[6] Fresno F, Raquel P, Su'arezc S, Coronado J M, Photocatalytic materials: recent achievements and near future trends[J]. J. Mater. Chem. A, 2014, 2:2863-2884.

[7] 蔡伟民,龙明策. 环境光催化材料与光催化净化技术[M]. 上海:上海交通大学出版社,2011.

[8] Thimsen E, Biswas S, Lo C S, et al. Predicting the band structure of mixed transition metal oxide: theory and experiment[J]. J. Phys. Chem. C,2009, 113(5): 2014-2021.

[9] Chen X B, Shen S H, Guo L J, et al. Semiconductor-based photocatalytic hydrogen generation[J]. Chem. Rev., 2010, 110(11): 6503-6570.

[10] Nasrallah N., Kebir M L, Koudri Z., Trari M., Photocatalytic reduction of Cr(VI)on the novel hetero-system CuFe/CdS[J]. J. Hazard. Mater.,2011,185:1398-1404.

[11] 杜卫平,李绩,冷文华,许宜铭.氧化铁和羟基氧化铁光催化还原银离子[J].物理化学学报,2009,8:1530-1534.

[12] Li L., Xin B. F..Photogenerated carrier transfer mechanism and photocatalysis properties of TiO2 sensitized by Zn(II) phthalocyanine[J]. J. CENT. SOUTH. UNIV. T, 2010, 17:218-222.

[13] Yu J. G., Zhang J. Liu S.W..Ion-exchange synthesis and enhanced visible-light photoactivity of CuS/ZnS nanocomposite hollow spheres[J]. J. Phys. Chem. C. 2010,114: 13642-13649.

[14] Kou J H, Li Z S, Guo Y, et al. Photocatalytic degradation of polycyclic aromatic hydrocarbons in GaN:ZnO solid solution-assisted process: Direct hole oxidation mechanism[J]. J. Mol. Catal. A., 2010,325:48-54.

[15] Wang Q., Zhang M., Chen C.C., Ma W.H., J.C. Zhao.Photocatalytic aerobic  oxidation of alcohols on TiO2: The acceleration effect of a Bronsted acid[J]. Angew, Chem. Int. Ed.,2010, 49: 7976-7979.

[16] Liang H., Li X., Yang Y., et al..Effects of dissolved oxygen,pH,and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO2 nanotube films[J]. Chemosphere., 2008,73:805-812.

[17] Chen C.C., Lei P.X., Ji H.W., et al.. Photocatalysis by Titanium Dioxide and polyoxometalate/TiO2 cocatalysts intermediates and mechanistic study[J]. Environ. Sci. Technol.,2004, 38:329-337.

[18] Jonsson M., Lind J., Reitberger T., et al., Free radical combination reactions involving phenoxyl radicals[J]. J. Phys. Chem.,1993, 97: 8229-8233.

[19] Lanzalunga O., Bietti M,. Photo and radiation chemical induced degradation of lignin model compounds[J]. J. Photochem. Photobio. B,2000, 56: 85-108.

[20] Antunes C.S.A., Bietti M., Salamone M., et al.Early stages in the TiO2-photocatalyzed degradation of simple phenolic and non-phenolic lignin model compounds[J]. J. Photo-chem. Photobio. A,2004, 163:453-462.

[21] Zhao X., Xu T.G., Yao W.Q., et al.Photodegradation of dye pollutants catalyzed by γ-Bi2MoO6 nanoplate under visible light irradiation[J]. Appl. Sur. Sci.,2009, 255: 8036-8040.

[22] Fu H.B., Zhang L.W., Zhang S,C., et al.ESR spin-trapping detection of radical intermediates in N-doped TiO2-assisted photodegradation of 4-CP[J]. J. Phys. Chem. B,2006, 110: 3061-3065.

[23] Hu C., Peng T.W., Hu X.X., et al.Plasmon-induced photodegradation of toxic pollutions with Ag-AgI/Al2O3 under visible-light irradiation[J]. J. Am. Chem. Soc.,2010,132:857-862.

[24] Li W.J., Li D. Z., Xian T. J., et al.Specific analyses of the active species on Zn0.28Cd0.72S and TiO2 photocatalysts in the degradation of methyl orange[J]. J. Phys. Chem. C,2010, 114, 21482-21492. 

[25] Li W.J., Li D.Z., Lin Y.M., et al.Evidence for the active species involved in the photodegradation process of methyl orange on TiO2[J]. J. Phys. Chem. C,2012, 116, 3552-3560.

[26] 张金龙,陈锋,何斌. 光催化[M]. 上海:华东理工大学出版社,2004.

[27] 高镰,郑珊,张青红. 纳米氧化钛光催化材料及应用[M]. 北京:化学工业出版社,2002.

[28] Linsebigler A L, Lu G, Yates Jr J T. Photocatalysis on TiO2 surfaces: principles, mechanisms and selected results[J]. Chem. Rev, 1995, 95(3): 735-758.

[29] Fresno F, Raquel P, Su'arezc S, Coronado J M.Photocatalytic materials: recent achievements and near future trends[J]. J. Mater. Chem. A, 2014, 2:2863-2884.

[30] 朱永法,姚文清,宗瑞隆. 光催化:环境净化与绿色能源应用探索[M]. 北京:化学工业出版社,2015.

[31] Gombac V, De Rogatis L,Gasparotto A, et al. TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications[J]. Chem.Phys.,339(1-3): 2007, 111-123.

[32] Yu J G, J C Yu Jimmy, Cheng B, et al.The effect of F-doping and temperature on the structural and textural evolution of mesoporous TiO2 powders[J]. J. Solid State Chem., 174: 2003, 372-380.

[33] Salvador P, Garcia Gonzalez M, Munoz F. Catalytic role of lattice defects in the photoassisted oxidation of water at (001)n-titanium (IV)oxide rutile[J]. J. Phys Chem., 1992, 96 (25): 10349-10353.

[34] Ricolleau C, Audinet L, Gandais M, et al., Structural transformations in II-VI semicon-ductor nanocrystals[J]. Eur. Phys. J. D, 1999, 9:565-570.

[35] Asahi R,Morikawa T,Ohwaki T,et al.Visible light photocatalysis in nitrogen-doped titanium oxides[J].Science,2001,293(5528):269-271.

[36] Kim S, Hwang S J, Choi W. Visible light active Platinum ion-doped TiO2 photocatalysts [J], J. Phys. Chem. B., 2005, 109: 24260-24267

[37] Girginer B., Galli G, Chiellini E, et al.Preparation of stable CdS nanoparticles in aqueous medium and their hydrogen generation efficiencies in photolysis of water [J].Int. J. Hydrogen Energy, 2009, 34: 1176-1184.

[38] Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium [J]. J. Phys. Chem. B., 2002, 106: 5029-5034.

[39] Umebayashi T, Yamaki T, Itoh H,etc. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calcul ations[J]. J.Phys.Chem.Solids, 2002,63:1909-1920.

[40] Khan S U M, Al-Shahry M, JrIngler B W. Efficient photocatalytic water splitting by a chemically modified n-TiO2[J]. Science, 2002, 297: 2243-2245.

[41] Umebayashi T, Yamaki T, Itoh H, et al. Band gap narrowing of titanium dioxide by sulfur doping [J]. Appl. Phys. Lett., 2002, 81: 454-456.

[42] Hong X T, Wang Z P, Cai W M, et al.Visible-light-activated nanoparticle photocatalysts of iodine-doped titanium dioxide[J]. Chem. Mater., 2005, 17: 1548-1552

[43] Ohno T, Tsubota T, Toyofuku M, et al. Photocatalytic activity of a TiO2 photocatalyst doped with C4+ and S4+ ions having arutile phase under visible light [J]. Catal. Lett., 2004, 98:255-258.

[44] Ohno T, Akiyoshi M, Umebayashi T, et al.Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light[J].Appl. Cata. A: Gen, 2004, 265:115-121.

[45] Ohno T, Tsubota T, Nakamura Y, et al.Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light[J]. Appl. Catal. A:Gen., 2005, 288:74-79

[46] Nukumizu K, Nunoshige J, Takata T, et al. TiNxOyFz as a stable photocatalyst for water Oxidation in visible light (<570nm)[J]. Chem. Lett., 2003, 32:196-197.

[47] Zhao W, Ma W H, Chen C C, et al.Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation[J]. J. Am. Chem. Soc., 2004, 126: 4782-4783.

[48] Tsuji I, Kato H, Kobayashi H, et al.Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (Agln)xZn21-xS2 solid solution photocatalysts with visible-light response and their surface nanostruc tures[J]. J. Am. Chem. Soc. 2004, 126: 13406-13413.

[49] Xing C J, Zhang Y J, Yan W, Guo L J.Band structure-controlled solid solution of Cdl-xZnxS photocatalyst for hydrogen production by waters plitting[J]. Int. J. Hydrogen Energy. 2006, 31: 2018-2024.

[50] Kudo A, Sekizawa M. Photocatalytic H2 evolution under visible light irradiation on Zn1-xCuxS solid solution [J]. Catal. Lett.,1999, 58: 241-243.

[51] Kudo A, Miseki Y, Heterogeneous photocatalyst materials for waters plitting[J]. Chem. Soc. Rev.,2009, 38: 253-278.

[52] Robert D. Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications[J]. Catal. Today, 2007, 122: 20-26.

[53] Tak Y, Kim H, Lee D, et al., Type-II CdS nanoparticle-ZnO nanowire heterostrueture arrays fabricated by a solution process: enhanced photocatalytic activity[J]. Chem. Commun., 2008, 38(38): 4585-4587.

[54] Kida T, Guan G Q, Minami Y, et al.Photocatalytic hydrogen production from water over a LaMnO3/CdS nanocomposite prepared by the reverse micelle method[J]. J. Mater. Chem., 2003, 13: 1186-1191.

[55] Zhang J, Li M J, Feng Z C, et al.UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk[J]. J. Phys. Chem. B., 2006, 110: 927-935.

[56] Lunawat P S, SenaPati S, Kumar R, et al.Visible light-induced splitting of water using CdS nanocrystallites immobilized over water-repellant polymeric surface [J]. Int.J.Hydrog.Energy, 2007, 32: 2784-2790.

[57] Yoshimura J, Tanaka A, Kondo J N, et al.Visible-light induced hydrogen evolution on CdS/K4NB6O17[J]. Bull. Chem. Soe. JPn., 1995, 68: 2439-2445.

[58] Choi J, Ryu S Y, Baleerski W, et al.Photocatalytic production of hydrogenon Ni/NiO/KNbO3/CdS nanocomposites using visiblc light[J]. J. Mater. Chem., 2008, 18: 2371-2378.

[59] Shen S H, Guo L J, Growth of quantum-confined CdS nanoparticles inside Ti-MCM-41 as a visible light photocatalyst[J]. Mater. Res. Bull., 2008, 43: 437-446.

[60] Park H, Choi W, Hoffmann M R.Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production [J]. J. Mater. Chem., 2008, 18: 2379-2385.

[61] Woan K,Pyrgiotakis G,Sigmund W. Photocatalytic carbon-nanotube-TiO2 composites[J]. Adv. Mater., 2009, 21: 2233-2239.

[62] Yu Y., Yu J. C., Yu J. G., KwokY. C., et al.Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes[J]. Appl. Catal. A: Gen. 2005, 289: 186-189.

[63] Liu B., Zeng H. C.Carbon nanotubes supported mesoporous mesocrystals of anatase Ti[J]. Chem. Mater.,2008, 20: 2711-2719.

[64] Meng Z D, Oh W.C.Photocatalytic degradation of methylene blue on Fe-fullerene/TiO2 under visible-light irradiation [J]. Asian. J. Chem., 2011, 23: 847-851.

[65] Meng Z D, Zhu L, Choi J G, et al.Effect of Pt treated fullerene/TiO2 on the photocatalytic degradation of MO under visible light[J]. J.Mater.Chem.,2011, 21:7596-7603.

[66] 肖信,张伟德. 碳纳米管/半导体复合材料光催化研究进展[J]. 化学进展,2011,23(4):657-668.

[67] Zhang H., Lv X J., Li Y. M., et al. P25-graphene composite as a high performance photocatalyst[J].ACS Nano.,2010,4:380-386.

[68] Li Q., Guo B.D., Yu J.G, et al.Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets[J]. J. Am. Chem. Soc.,2011,133: 10878-10884.

[69] Shi S.X., Lu G.X.Dye-sensitized reduced graphene oxide photocatalysts for highly efficient visible-light-driven water reduction[J]. J. Phys. Chem. C.,2011, 115: 13938-13945.

[70] Zhang H., Fan X.F., Quan X., et al.Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light[J]. Environ. Sci. Technol.,2011, 45: 5731-5736.

[71] 龙明策,蔡俊,蔡伟民,陈恒,柴歆烨. 设计新型可见光响应的半导体光催化剂[J]. 化学进展,2006,18(9):1065-1073.

[72] 谢立进,马峻峰,赵忠强,田华,周军. 半导体光催化剂的研究现状及展望[J]. 硅酸盐通报,2005,6:80-84.

[73] 朱永法. 纳米材料的表征与测试技术[M]. 北京:化学工业出版社,2006.

[74] 格雷格(Gregg,S.J.),辛(Sing,K.S.W.).吸附、比表面与孔隙率(原书第2版)[M]. 高敬琮等译.北京:化学工业出版社,1989.

[75] 李国希译. 吸附科学[M]. 北京:化学工业出版社,2005.

[76] 陈诵英,孙予罕,丁云杰,等.吸附与催化[M].郑州:河南科学技术出版社,2001.

[77] Barrett E. P.; Joyner L. G.; Halenda P. P.. The determination of pore volume and area distributions in porous substances: I. computations from nitrogen isotherms[J]. J. Am.Chem. Soc., 1951, 73:373-380

[78] Thomas W. J., Crittenden B.. Adsorption technology and design[M]., Elsevier Science & Technology., 1998.