3.2 课后习题详解
1.应用算术平均数表示集中趋势要注意什么问题?
答:在应用算术平均数表示几种趋势时,要注意:
(1)算术平均数易受两极端数值(极大或极小)的影响。
(2)一组数据中某个数值的大小不够确切时就无法计算其算术平均数。如果不处理好这两个问题,那么算术平均数将无法表示集中趋势。
2.中数,众数,几何平均数,调和平均数各适用于心理与教育研究中的哪些资料?
答:(1)中数的适用条件:
①当一组观测结果中出现两个极端数目时;
②当次数分布的两端数据或个别数据不清楚时,只能取中数作为集中趋势的代表值;
③当需要快速估计一组数据的代表值时,也常用中数。
(2)众数的适用条件:
①当需要快速而粗略地寻求一组数现代心理与教育统计学据的代表值时;
②当一组数据出现不同质的情况时,可用众数表示典型情况,如工资收入、学生成绩等常以次数最多者为代表值;
③当次数分布中有两极端的数目时,除了一般用中数外,有时也用众数;
④当粗略估计次数分布的形态时,有时用平均数与众数之差,作为表示次数分布是否偏态的指标;
⑤当一组数据中同时有两个数值的次数都比较多时,即次数分布中出现双众数时,也多用众数来表示数据分布形态。
(3)几何平均数的适用资料:
当要计算教育经费增加率、学习方面的进步率和学生或人口增加率的估计时,可使用几何平均数。
(4)调和平均数的适用资料:
在心理与教育研究方面的应用,主要是用来描述学习速度方面的问题。调和平均数作为一种集中量数,在描述速度方面的集中趋势时,优于其他集中量数。在有关研究学习速度的实验设计中,反应指标一般常取两种形式:一是工作量固定,记录各被试完成相同工作所用的时间。二是学习时间一定,记录一定时间内各被试完成的工作量。由于反应指标不同,在计算学习速度时也不一样,这是应用调和平均数要特别注意的地方。
3.对于下列数据,使用何种集中量数表示集中趋势其代表性更好?并计算它们的值。
(1)4 5 6 6 7 29
(2)3 4 5 5 7 5
(3)2 3 5 6 7 8 9
答:(1)中数6,因为题目中有极端数据,不适合用算术平均数。
(2)众数5,因为题目中有重复数据。
(3)算术平均数5.71。
4.求下列次数分布的平均数、中数。
解:累积次数分布表
(1)根据次数分布表求平均数代入公式,得。
(2)由累积次数表可知,中数位于35~39组中,则=39.5,=157,=59,=34,=5。将数据代入公式3.3b,
得。
答:以上次数分布的平均数约为36.14,中数约为36.63。
5.求下列四个年级的总平均成绩。
解:根据题意应用公式3.5,,求出总平均成绩。
将数据代入公式,得
答:以上四个年级的总平均成绩约为91.72。
6.三个不同被试对某词的联想速度如下表,求平均联想速度。
解:根据题意,应用调和平均数求平均联想速度。
先求出每个被试的联想速度
被试A的联想速度为:
被试B的联想速度为:
被试C的联想速度为:
将数据代入公式3.7,
得=5.2。
也可以根据求解,结果相同。
答:平均联想速度为5.2。
7.下面是某校几年来毕业生的人数,问平均增加率是多少?并估计10年后的毕业人数有多少。
解:(1)根据题意,应用公式3.6d:,求平均增长率。
代入数据,得
(2)10年的毕业人数约有:。
答:平均增加率约是1.098,10年后的毕业人数约有2582人。
8.计算第二章习题4中次数分布表资料的平均数、中数及原始数据的平均数。
解:(1)分组数据求平均数,将数据代入,得。
(2)分组数据求中数,由累积次数表可知中数在175~187.25组中,用直线内插法求中数,由累积次数表可知,175对应的百分位为44,187.25对应的百分位为69则有,。
(3)原始数据求平均数,将原始数据代入公式3.1,,得。
答:次数分布表的平均数约为177.6,次数分布表的中数约为177.94,原始数据的平均数约为176.8。