更新时间:2018-12-30 15:06:36
封面
版权信息
序
前言
第1章 概述
1.1 激光发展简史
1.2 激光的特性
1.2.1 高方向性
1.2.2 单色性
1.2.3相干性
1.2.4 高亮度
1.3 激光应用简介
习题与思考题一
第2章 激光产生的基本原理
2.1 原子发光的机理
2.1.1 原子的结构
2.1.2 原子的能级
2.1.3 原子发光的机理
2.2 自发辐射、受激辐射和受激吸收
2.2.1 自发辐射
2.2.2 受激辐射
2.2.3 受激吸收
2.2.4 三个爱因斯坦系数A21、B21、B12之间的关系
2.3 激光产生的条件
2.3.1 受激辐射光放大
2.3.2 集居数反转
2.3.3 激活粒子的能级系统
2.3.4 光的自激振荡
2.4 激光器的基本组成与分类
2.4.1 激光器的基本组成
2.4.2 激光工作物质
2.4.3 泵浦源
2.4.4 光学谐振腔
2.4.5 激光器的分类
习题与思考题二
第3章 光学谐振腔与激光模式
3.1 光学谐振腔的构成和分类
3.1.1 光学谐振腔的构成和分类
3.1.2 典型开放式光学谐振腔
3.2 激光模式
3.2.1 驻波与谐振频率
3.2.2 纵模
3.2.3 横模
3.3 光学谐振腔的损耗
3.3.1 光腔的损耗
3.3.2 光子在腔内的平均寿命
3.3.3 无源腔的品质因数——Q值
3.4 光学谐振腔的稳定性条件
3.4.1 腔内光线往返传播的矩阵表示
3.4.2 共轴球面腔的稳定性条件
3.4.3 临界腔
3.5 光学谐振腔的衍射理论基础
3.5.1 自再现模
3.5.2 菲涅耳—基尔霍夫衍射积分
3.5.3 自再现模积分方程
3.5.4 自再现模积分方程解的物理意义
3.6 平行平面腔的自再现模
3.6.1 平行平面镜腔的自再现模积分方程
3.6.2 平行平面腔模的数值迭代解法
3.6.3 单程衍射损耗、单程相移与谐振频率
3.7 对称共焦腔的自再现模
3.7.1 方形镜对称共焦腔
3.7.2 圆形镜共焦腔
3.8 一般稳定球面腔的模式理论
3.8.1 一般稳定球面腔与共焦腔的等价性
3.8.2 一般稳定球面腔的模式特征
3.9 非稳定谐振腔
3.9.1 非稳腔的基本结构
3.9.2 非稳腔的几何自再现波型
3.9.3 非稳腔的几何放大率
3.9.4 非稳腔的能量损耗
3.9.5 非稳腔的输出耦合方式
3.9.6 非稳腔的主要特点
习题与思考题三
第4章 高斯光束
4.1 高斯光束的基本性质
4.1.1 高斯光束
4.1.2 高斯光束的基本性质
4.1.3 高斯光束的特征参数
4.2 高斯光束的传输与变换规律
4.2.1 高斯光束的传输与变换规律
4.2.2 实例分析
4.3 高斯光束的聚焦和准直
4.3.1 高斯光束的聚焦
4.3.2 高斯光束的准直
4.4 高斯光束的匹配
4.5 激光束质量因子
习题与思考题四
第5章 激光工作物质的增益特性
5.1 谱线加宽与线型函数
5.1.1 谱线加宽概述
5.1.2 光谱线加宽的机理
5.1.3 均匀加宽、非均匀加宽和综合加宽
5.2 速率方程
5.2.1 对自发辐射、受激辐射、受激吸收概率的修正
5.2.2 单模振荡速率方程
5.2.3 多模振荡速率方程
5.3 均匀加宽激光工作物质对光的增益
5.3.1 增益系数
5.3.2 反转集居数饱和与增益饱和