群体智能与智能网联:原理、算法与应用
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

参考文献

[1] MINSKY M. The society of mind[M]. New York: Simon Schuster, 1988.

[2] BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[EB/OL]. (2020-05-28)[2021-07-20]. https://arxiv.org/abs/2005.14165v4.

[3] LEVY P. The semantic sphere 1: computation, cognition and information economy[M]. Hoboken: Wiley-ISTE, 2011.

[4] COIT D W. Genetic algorithms and engineering design[J]. Engineering Economist, 1998, 43(4): 379-381.

[5] DORIGO M, BIRATTARI M, STüTZLE T. Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2007, 1(4): 28-39.

[6] DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1): 29-41.

[7] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks. New York: IEEE Press, 1995, 4: 1942-1948.

[8] HOLLAND O, MELHUISH C. Stigmergy, self-organization, and sorting in collective robotics[J]. Artificial Life, 1999, 5(2): 173-202.

[9] CHETTRI L, BERA R. A comprehensive survey on internet of things (IoT) toward 5G wireless systems[J]. IEEE Internet of Things Journal, 2020, 7(1): 16-32.

[10] SCHWARZROCK J, ZACARIAS I, BAZZAN A L C, et al. Solving task allocation problem in multi unmanned aerial vehicles systems using swarm intelligence[J]. Engineering Applications of Artificial Intelligence, 2018, 72: 10-20.

[11] KARUNA H, VALCKENAERS P, SAINT-GERMAIN B, et al. Engineering self-organising systems[M]. Berlin: Springer, 2005: 210-226.

[12] GUO B, CHEN C, ZHANG D, et al. Mobile crowd sensing and computing: when participatory sensing meets participatory social media[J]. IEEE Communications Magazine, 2016, 54(2): 131-137.

[13] LI R, ZHAO Z, XU X, et al. The collective advantage for advancing communications and intelligence[J]. IEEE Wireless Communications, 2020, 27(4): 96-102.

[14] CHEN Y W, KOBAYASHI K, KAWABAYASHI H, et al. Application of interactive genetic algorithms to boid model based artificial fish schools[C]//Knowledge-Based Intelligent Information and Engineering Systems. Berlin: Springer, 2008: 141-148.

[15] SAVKIN A V. Coordinated collective motion of Groups of autonomous mobile robots: analysis of Vicsek's model[J]. IEEE Trans. on Automatic Control, 2004, 49(6): 981-982.

[16] CHOONG CHIAO MEI F, PHON-AMNUAISUK S, ALIAS M Y, et al. Adaptive ga: an essential ingredient in high-level synthesis[C]//2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). New York: IEEE Press, 2008: 3837-3844.

[17] DE JONG K A, SPEARS W M. A formal analysis of the role of multi-point crossover in genetic algorithms[J/OL]. Ann Math Artif Intell, 1992, 5(1): 1-26[2022-11-07]. https://doi.org/10.1007/BF01530777.

[18] ÜÇOLUK G. Genetic algorithm solution of the TSP avoiding special crossover and mutation[J]. Intelligent Automation and Soft Computing, 2002, 8(3): 265-272.

[19] ZHAN Z H, ZHANG J, LI Y, et al. Adaptive particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2009, 39(6): 1362-1381.

[20] SHEN M, ZHAN Z H, CHEN W N, et al. Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 7141-7151.

[21] TAN M. Multi-agent reinforcement learning: independent vs. cooperative agents[M]. San Francisco: Morgan Kaufmann Publishers Inc., 1997: 487-494.

[22] SHAH K, KUMAR M. Distributed independent reinforcement learning (DIRL) approach to resource management in wireless sensor networks[C]//IEEE International Conference on Mobile Adhoc and Sensor Systems. New York: IEEE Press, 2007: 1-9.

[23] VOLODYMYR M, KORAY K, DAVID S, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.

[24] ZHANG Y, CLAVERA I, TSAI B, et al. Asynchronous methods for model-based reinforcement Learning[Z]. 2019.

[25] SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms[C]//Proceedings of the 31st International Conference on Machine Learning. Beijing, 2014: 387-395.

[26] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[Z]. 2017.

[27] GUPTA J K, EGOROV M, KOCHENDERFER M. Cooperative multi-agent control using deep reinforcement learning[C]//Autonomous Agents and Multiagent Systems. Cham, 2017:66-83.

[28] CHEN M, YANG Z, SAAD W, et al. A joint learning and communications framework for federated learning over wireless networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 269-283.

[29] DUTTA S, JOSHI G, GHOSH S, et al. Slow and stale gradients can win the race:Error-runtime trade-offs in distributed SGD[EB/OL].[2020-03-04]. http://proceedings.mlr. press/v84/dutta18a.html.

[30] HANNA S K, BITAR R, PARAG P, et al. Adaptive distributed stochastic gradient descent for minimizing delay in the presence of stragglers[EB/OL]. (2020-02-25)[2023-09-18]. http://arxiv.org/abs/2002.11005.

[31] HU R, GONG Y, GUO Y. Cpfed: Communication-efficient and privacy-preserving federated learning[EB/OL]. (2020-03-30)[2023-09-18]. http://arxiv.org/abs/2003.13761.

[32] MOTHUKURI V, PARIZI R M, POURIYEH S, et al. A survey on security and privacy of federated learning[J]. Future Generation Computer Systems, 2021, 115: 619-640.

[33] SMITH V, CHIANG C K, SANJABI M, et al. Federated multi-task learning[C]//NIPS'17:The Thirty-first Annual Conference on Neural Information Processing Systems. Long Beach:NIPS 2017, 2017.

[34] TU Y, RUAN Y, WAGLE S, et al. Network-aware optimization of distributed learning for fog computing[C]. Toronto: Proc. IEEE INFOCOM 2020, 2020: 2509-2518.

[35] WANG S, TUOR T, SALONIDIS T, et al. Adaptive federated learning in resource constrained edge computing systems[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(6): 1205-1221.

[36] GAMA F, ISUFI E, LEUS G, et al. Graphs, convolutions, and neural networks[EB/OL]. (2020-03-08)[2023-09-18]. https://arxiv.org/abs/2003.03777v1.

[37] WU Y, MANSIMOV E, LIAO S, et al. Scalable trust-region method for deep reinforcement learning using kronecker-factored approximation[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, 2017: 5285-5294.

[38] GU S, HOLLY E, LILLICRAP T, et al. Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates[C]//IEEE International Conference on Robotics and Automation (ICRA). New York: IEEE Press, 2017: 3389-3396.

[39] REISIZADEH A, MOKHTARI A, HASSANI H, et al. FedPAQ: a communication-efficient federated learning method with periodic averaging and quantization[C]//International Conference on Artificial Intelligence and Statistics. PMLR, 2020: 2021-2031.

[40] XU X, LI R, ZHAO Z, et al. Stigmergic independent reinforcement learning for multi-agent collaboration[EB/OL]. [2023-09-18]. https://www.rongpeng.info/files/Paper_TNNLS2022Stigmergy.pdf.

[41] TRIPATHY A, YELICK K, BULUC A. Reducing communication in graph neural network training[Z]. 2020.

[42] ARDI T, TAMBET M, DORIAN K, et al. Multiagent cooperation and competition with deep reinforcement learning[J]. Plos One, 2017, 12(4): e0172395.

[43] PENG P, WEN Y, YANG Y, et al. Multiagent bidirectionally-coordinated nets: emergence of human-level coordination in learning to play starcraft combat games[Z]. 2017.

[44] JIANG J, LU Z. Learning attentional communication for multi-agent cooperation[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, 2018: 7265-7275.

[45] KIM D, MOON S, HOSTALLERO D, et al. Learning to schedule communication in multiagent reinforcement learning[Z]. 2019.

[46] SUNEHAG P, LEVER G, GRUSLYS A, et al. Value-decomposition networks for cooperative multi-agent learning[Z]. 2017.

[47] RASHID T, SAMVELYAN M, SCHROEDER C, et al. QMIX: monotonic value function factorisation for deep multi-agent reinforcement learning[C]//Proceedings of the 35th International Conference on Machine Learning. Stockholm, 2018: 4295-4304.

[48] SON K, KIM D, KANG W J, et al. QTRAN:learning to factorize with transformation for cooperative multi-agent reinforcement learning[Z]. 2019.

[49] FOERSTER J, FARQUHAR G, AFOURAS T, et al. Counterfactual multi-agent policy gradients[Z]. 2017.

[50] IQBAL S, SHA F. Actor-attention-critic for multi-agent reinforcement learning[Z]. 2019.

[51] FOERSTER J, NARDELLI N, FARQUHAR G, et al. Stabilising experience replay for deep multi-agent reinforcement learning[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney, 2017: 1146-1155.

[52] OMIDSHAFIEI S, PAZIS J, AMATO C, et al. Deep decentralized multi-task multi-agent reinforcement learning under partial observability[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney, 2017: 2681-2690.

[53] RABINOWITZ N, PERBET F, SONG F, et al. Machine theory of mind[C]//Proceedings of the 35th International Conference on Machine Learning. Stockholm, 2018: 4218-4227.

[54] OKWU M O, TARTIBU L K. Bat algorithm: volume 927[M]. Cham: Springer International Publishing, 2021: 71-84.

[55] KARABOGA D. Artificial bee colony algorithm[J]. Scholarpedia, 2010, 5(3): 6915.

[56] XING B, GAO W J. Imperialist competitive algorithm: volume 62[M]. Springer Cham:Springer International Publishing, 2014: 203-209.

[57] REZAEI H, BOZORG-HADDAD O, CHU X. League championship algorithm (lca): volume 720[M]. Singapore: Springer Singapore, 2018: 19-30.

[58] FOERSTER J, ASSAEL I A, DE FREITAS N, et al. Learning to communicate with deep multi-agent reinforcement learning[C]//Advances in Neural Information Processing Systems. Barcelona, 2016, 29: 2145-2153.

[59] SUKHBAATAR S, SZLAM A, FERGUS R. Learning multiagent communication with back-propagation[C]//Advances in Neural Information Processing Systems. Barcelona, 2016, 29:2252-2260.

[60] MAO H, GONG Z, NI Y, et al. ACCNet: actor-coordinator-critic net for learning-to-communicate with deep multi-agent reinforcement learning[Z]. 2017.

[61] LOWE R, WU Y, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments[C]//Advances in Neural Information Processing Systems. Long Beach, 2017: 6379-6390.

[62]梅宏.如何构造人工群体智能[EB/OL].(2022-04-27)[2023-09-18].http://www.shareteches.com/newweb/web/view.aspx?id=32047.