群体智能与智能网联:原理、算法与应用
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

1.2.3 广义群体智能

广义群体智能涵盖了个体强化学习和群体智能涌现两个方面的内容,并针对具体应用给出解决方案。其中,算法和模型是群体智能技术的基础,包括群体智能算法以及多种集群运动模型;多智能体系统除个体拥有一定的智能外,通过应用这些算法/模型建立联系,协同完成任务。虽然网络的出现和大规模普及为群体的跨时空大规模协同提供了可能,促进了网络空间内群体智能系统的探索和成功实践,但目前而言,网络空间内的群体智能主要针对特定问题精心设计的群体力量利用方案。一方面,对群体智能规律和机理的认识与探讨仍然不够充分、完整。与此同时,现阶段形成的网络空间群体智能现象仍然处于相对初级的阶段,距离理想形态的群体智能现象差距较大,无法确保求解特定问题时群体智能的可控重复发生[62]。传统的物理空间关注低等生物群体智能现象的观察解释,而网络空间关注利用“群智”“群力”的实践,目前把物理空间和网络空间结合起来的现象很少。另一方面,智能体之间的复杂关系往往难以有效刻画,从而引起策略学习和进化的困难。在一些简易群体智能系统中,智能体策略学习和进化仅依赖于本身,并通过一些预设规则刻画多智能体的复杂关系,但规则的繁杂导致无法有效、准确、高效地扩展到大规模群体智能系统中。