电机与电气控制技术
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

任务1.1 常用低压电器

1.1.1 低压电器基本知识

电器是接通和断开电路或调节、控制和保护电路及电气设备用的电工器具。电器的用途广泛,功能多样,种类繁多,结构各异。

1.几种常用的电器分类

(1)按工作电压等级分类

1)高压电器:用于交流电压1000V以上、直流电压1500V以上电路中的电器,例如高压断路器、高压隔离开关、高压熔断器等。

2)低压电器:用于交流电压1000V及以下、直流电压1500V及以下电路中的电器,例如接触器、继电器等。

(2)按动作原理分类

1)手动电器:用手或依靠机械力进行操作的电器,如手动开关、控制按钮和行程开关等主令电器。

2)自动电器:借助于电磁力或某个物理量的变化自动进行操作的电器,如接触器及各种类型的继电器、电磁阀等。

(3)按用途分类

1)控制电器:用于各种控制电路和控制系统的电器,例如接触器、继电器和电动机起动器等。

2)主令电器:用于在自动控制系统中发送动作指令的电器,例如按钮、行程开关和万能转换开关等。

3)保护电器:用于保护电路及用电设备的电器,如熔断器、热继电器、各种保护继电器和避雷器等。

4)执行电器:用于完成某种动作或传动功能的电器,如电磁铁、电磁离合器等。

5)配电电器:用于电能的输送和分配的电器,例如高压断路器、隔离开关、刀开关、低压断路器等。

(4)按工作原理分类

1)电磁式电器:依据电磁感应原理来工作的电器,如接触器、各种类型的电磁式继电器等。

2)非电量控制电器:依靠外力或某种非电物理量的变化而动作的电器,如刀开关、行程开关、按钮、速度继电器、温度继电器等。

2.低压电器的作用

低压电器能够根据操作信号或外界现场信号的要求,自动或手动改变电路的状态、参数,实现对电路或被控对象的控制、保护、测量、调节、指示和转换。

(1)控制作用 如电梯的上下移动、快慢速自动切换与自动停层等。

(2)保护作用 根据设备的特点,对设备、环境以及人身实行自动保护,如电机的过热保护、电网的短路保护和漏电保护等。

(3)测量作用 利用仪表及与之相适应的电器,对设备、电网或其他非电参数进行测量,如电流、电压、功率、转速、温度和湿度等。

(4)调节作用 低压电器可对一些电量和非电量进行调整,以满足用户的要求,如柴油机油门的调整、房间温湿度的调节和照明度的自动调节等。

(5)指示作用 利用低压电器的控制、保护等功能,检测并指示电气设备运行状况与电气电路工作情况,如绝缘监测、保护掉牌指示等。

(6)转换作用 利用低压电器在用电设备之间实现转换或对控制电路分时投入运行,以实现功能切换,如励磁装置的手动与自动的转换、供电的市电与自备电的切换等。

当然,低压电器的作用远不止这些,随着科学技术的发展,新功能、新设备会不断出现。

对低压配电电器的要求是灭弧能力强、分断能力好、热稳定性好及限流准确等;对低压控制电器,则要求其动作可靠、操作频率高、使用寿命长并具有一定的带负载能力。

常见低压电器的主要种类及用途见表1-1。

表1-1 常见低压电器的主要种类及用途

3.电磁式电器的基本结构

从结构上看,电器一般都有两个基本组成部分,即感受部分与执行部分。感受部分接收外界输入的信号,并通过转换、放大与判断做出有规律的反应,使执行部分动作,输出相应的指令,实现控制的目标。对于有触头的电磁式电器,感受部分是电磁机构,执行部分是触头系统。

(1)电磁机构

1)电磁机构的结构形式。电磁机构由吸引线圈、铁心和衔铁组成。吸引线圈通以一定的电压和电流,产生磁场及吸力,并通过气隙转换成机械能,从而带动衔铁运动使触头动作,完成触头的断开和闭合,实现电路的分断和接通。图1-1所示为几种常用的电磁机构的结构形式。根据衔铁相对铁心的运动方式,电磁机构可分为直动式与拍合式,拍合式又有衔铁沿棱角转动和衔铁沿轴转动两种。

图1-1 电磁机构的结构形式

1—衔铁 2—铁心 3—吸引线圈

吸引线圈用于将电能转换为磁能,按吸引线圈通入电流的性质不同,电磁机构分为直流电磁机构和交流电磁机构,其吸引线圈分别称为直流电磁线圈和交流电磁线圈。另外,根据吸引线圈在电路中的连接方式的不同,又有串联线圈和并联线圈。串联线圈采用粗导线且匝数少,又称为电流线圈;并联线圈匝数多且线径较细,又称为电压线圈。

2)电磁机构工作原理。当吸引线圈通入电流后,产生磁场,磁通经铁心、衔铁和气隙形成闭合回路,产生电磁吸力,将衔铁吸向铁心。与此同时,衔铁还受到反作用弹簧的拉力,只有当电磁吸力大于弹簧反力时,衔铁才可靠地被铁心吸住。而当吸引线圈断电时,电磁吸力消失,在弹簧作用下,衔铁与铁心脱离,即衔铁释放。电磁机构的工作特性常用吸力特性和反力特性来表述。

电磁机构的吸力特性是指电磁吸力与气隙的相互关系。当电磁机构吸引线圈通电后,铁心吸引衔铁(吸合)的力与气隙的关系称为吸力特性。电磁机构使衔铁释放(复位)的力与气隙的关系则称为反力特性。一般低压电器的电磁机构的吸力特性与反力特性曲线如图1-2所示。

3)电磁机构的输入-输出特性。电磁机构的吸引线圈加上电压(或通入电流)后,产生电磁吸力,从而使衔铁吸合。因此,也可将吸引线圈电压(或电流)作为输入量x,而将衔铁的位置作为输出量y,则电磁机构衔铁位置(吸合与释放)与吸引线圈电压(或电流)的关系称为电磁机构的输入-输出特性,通常也称为“继电特性”。

将衔铁处于吸合的位置记作y=1,处于释放的位置记作y=0。由以上分析可知,当吸力特性处于反力特性上方时,衔铁被吸合;当吸力特性处于反力特性下方时,衔铁被释放。使吸力特性处于反力特性上方的最小输入量用x0表示,称为电磁机构的动作值;使吸力特性处于反力特性下方的最大输入量用xr表示,称为电磁机构的复归值。

图1-2 电磁机构的吸力特性与反力特性曲线

电磁机构的输入-输出特性如图1-3所示,当输入量xx0时衔铁不动作,其输出量y=0;当x=x0时,衔铁吸合,输出量y从“0”跃变为“1”;再进一步增大输入量使xx0,输出量仍为y=1。当输入量xx0减小的时候,在xrxx0时,虽然吸力减小,但因衔铁吸合状态下的吸力仍比反力大,衔铁不会释放,其输出量y=1。当x=xr时,因吸力小于反力,衔铁才释放,输出量由“1”变为“0”;再减小输入量,输出量仍为“0”。所以,电磁机构的输入-输出特性为一矩形曲线。动作值与复归值均为继电器的动作参数,电磁机构的输入-输出特性是电磁式继电器的重要特性。

(2)触头系统 触头亦称触点,是电磁式电器的执行部分,起接通和分断电路的作用。因此,要求触头的导电、导热性能好,触头通常用铜、银、镍及其合金材料制成,有时也在铜触头表面电镀锡、银或镍。对于一些特殊用途的电器,如微型继电器和小容量的电器,触头采用银质材料制成。

图1-3 电磁机构的输入-输出特性

触头闭合且有工作电流通过时的状态称为电接触状态,电接触状态时触头之间的电阻称为接触电阻,其大小直接影响电路工作情况。若接触电阻较大,电流流过触头时会造成较大的电压降,这对弱电控制系统影响较严重。同时,电流流过触头时电阻损耗大,将使触头发热,导致温度升高,严重时可使触头熔焊,这样既影响工作的可靠性,又降低了触头的使用寿命。触头接触电阻的大小主要与触头的接触形式、接触压力、触头材料及触头表面状况等有关。

1)触头的接触形式。触头的接触形式有点接触、线接触和面接触三种,如图1-4所示。

图1-4 触头的接触形式

点接触由两个半球形触头或一个半球形触头与一个平面触头构成,常用于小电流的电器中,如接触器的辅助触头和继电器触头。线接触常做成指形触头结构,它们的接触区是一条直线,触头通断过程中是滚动接触的,并产生滚动摩擦,适用于通电次数多、电流大的场合,多用于中等容量电器。面接触触头一般在接触表面镶有合金,允许通过较大电流,中小容量接触器的主触头多采用这种结构。

2)触头的结构形式。触头在接触时,要求其接触电阻尽可能小,为使触头接触得更加紧密以减小接触电阻,同时消除开始接触时产生的振动,在触头上装有接触弹簧,使触头在刚刚接触时即产生初压力,且随着触头闭合逐渐增大触头互压力。

触头按其原始状态可分为常开触头和常闭触头。原始状态时(吸引线圈未通电时)断开,吸引线圈通电后闭合的触头叫常开触头(动合触头)。原始状态时闭合,吸引线圈通电后断开的触头叫常闭触头(动断触头)。吸引线圈断电后所有触头回复到原始状态。

按触头控制的电路可分为主触头和辅助触头。主触头用于接通或断开主电路,允许通过较大的电流;辅助触头用于接通或断开控制电路,只能通过较小的电流。

触头的结构形式主要有桥式和指形两类,如图1-5所示。桥式触头在接通与断开电路时由两个触头共同完成,对灭弧有利。桥式触头的接触形式一般是点接触和面接触。指形触头在接通或断开时产生滚动摩擦,能去掉触头表面的氧化膜,从而减小触头的接触电阻。指形触头的接触形式一般采用线接触。

图1-5 触头的结构形式

3)减小接触电阻的方法。首先,触头材料应选用电阻率小的,使触头本身的电阻尽量减小;其次,增加触头的接触压力,一般在动触头上安装触头弹簧;最后,改善触头表面状况,尽量避免或减少触头表面形成氧化膜,并在使用过程中尽量保持触头清洁。

(3)电弧的产生和灭弧方法

1)电弧的产生。在自然环境下开断电路时,如果被开断电路的电流(电压)超过某一数值(根据触头材料的不同,其值在0.25~1A、12~20V),在触头间隙中就会产生电弧。电弧实际上是触头间气体在强电场作用下产生的放电现象。这时触头间隙中的气体被电离,产生大量的电子和离子,在强电场作用下,大量的带电粒子做定向运动,使绝缘的气体变成了导体。电流通过这个电离区时所消耗的电能转换为热能和光能,由于热和光的效应,在触头间隙会产生高温并发出强光,使触头烧蚀,并使电路切断时间延长,甚至不能断开,造成严重事故。为此,必须采取措施熄灭或减小电弧。

2)电弧产生的原因。电弧产生的原因主要为4个物理过程:

①强电场放射。触头在通电状态下开始分离时,其间隙很小,电路电压几乎全部降落在触头间很小的间隙上,使该处电场强度很大,强电场将触头负极表面的自由电子拉入触头间隙,使触头间隙的气体中存在较多的电子,这种现象称为强电场放射。

②撞击电离。触头间隙的电子在电场作用下,向正极加速运动,经一定路程后获得足够大的动能,在其前进途中撞击气体原子,将气体原子分裂成电子和阳离子。此后,电子在向正极运动过程中还将撞击其他原子,使触头间隙中的气体电荷越来越多,这种现象称为撞击电离。

③热电子发射。撞击电离产生的阳离子向负极运动,撞击在负极上使负极温度逐渐升高,并使负极金属中电子动能增加,当负极温度达到一定程度时,一部分自由电子即有足够动能从负极表面逸出,再度参与撞击电离。电极由于高温发射电子的现象称为热电子发射。

④高温游离。当电弧间隙中的气体温度升高时,气体分子热运动速度加快,当电弧温度达到或超过3000℃时,气体分子发生强烈的不规则热运动并相互碰撞,使电中性的气体分子游离成电子和阳离子。这种因高温气体分子撞击所产生的游离称为高温游离。

3)灭弧的基本方法。

①快速拉长电弧,以降低电场强度,使电弧电压不足以维持电弧的燃烧,从而熄灭电弧。

②用电磁力使电弧在冷却介质中运动,降低弧柱周围的温度,使电荷运动速度减慢、电中和速度加快,从而使电弧熄灭。

③将电弧挤入绝缘壁组成的窄缝中冷却,加快电中和速度,使电弧熄灭。

④将电弧分成许多串联的短弧,增加维持电弧所需的临界电压降,最终熄灭电弧。