1.1.5 电磁式继电器
继电器是根据某种输入信号的变化,接通或断开控制电路,实现自动控制和保护电力装置的自动电器。被转化或施加于继电器的量称为继电器的激励量(输入量),继电器的激励量可以是电量,如交流或直流的电流、电压,也可以是非电量,如位置、时间、温度、速度和压力等。当输入量高于继电器的吸合值或低于继电器的释放值时,继电器动作,对于有触头式继电器是其触头闭合或断开,对于无触头式继电器是其输出发生阶跃变化,继电器以此提供一定的逻辑变量,实现相应的控制。
继电器的种类很多,按输入信号的性质分为电压继电器、电流继电器、时间继电器、温度继电器、速度继电器、中间继电器和压力继电器等;按工作原理可分为电磁式继电器、感应式继电器、电动式继电器、热继电器和电子式继电器等;按输出形式可分为有触点继电器和无触点继电器;按用途可分为控制用继电器与保护用继电器等。
1.电磁式继电器的构成
电磁式继电器是应用得最早、最多的一种继电器。其结构及工作原理与接触器大体相同,由电磁机构、触点系统和调节装置等组成。电磁式继电器的典型结构如图1-23所示。由于继电器用于控制电路,流过触头的电流比较小(一般为5A以下),故不需要灭弧装置,但继电器为满足控制要求,需调节动作参数,故有调节装置。
图1-23 电磁式继电器的典型结构
1—底座 2—铁心 3—释放弹簧 4、5—调节螺母 6—衔铁 7—非磁性垫片 8—极靴 9—触头系统 10—线圈
(1)电磁机构 直流继电器的电磁机构均为U形拍合式的,铁心和衔铁均由电工软铁制成,为了改变衔铁闭合后的气隙,在衔铁的内侧面上装有非磁性垫片,铁心则装在铝底座上。
(2)触头系统 继电器的触头一般都为桥式触头,有常开和常闭两种形式,没有灭弧装置。
(3)调节装置 为改变继电器的动作参数,继电器设有可以改变继电器释放弹簧松紧程度的调节装置和改变衔铁初始状态磁路气隙大小的调节装置,如调节螺母和非磁性垫片。
2.电压继电器
电压继电器用于电力拖动系统的电压保护和控制。其线圈并联接入主电路,用以感测主电路的线路电压;触头接入控制电路,为执行元件。按吸合电压的大小,电压继电器可分为过电压继电器、欠电压继电器和零电压继电器。
(1)过电压继电器 过电压继电器用于电路的过电压保护,其吸合整定值为被保护电路额定电压的1.05~1.2倍。当被保护电路的电压正常时,衔铁不动作;当被保护电路的电压高于额定值,达到过电压继电器的整定值时,衔铁吸合,触头动作,使控制电路失电,此时接触器即可及时分断被保护电路。
(2)欠电压继电器 欠电压继电器用于电路的欠电压保护,其释放整定值为电路额定电压的10%~60%。当被保护电路电压正常时,衔铁可靠吸合;当被保护电路电压降至欠电压继电器的释放整定值时,衔铁释放,触头复位,此时接触器即可及时分断被保护电路。
(3)零电压继电器 当被保护电路电压降低到电路额定电压的5%~25%时,零电压继电器衔铁释放,对电路实现零电压保护。这种继电器用于电路的失电压保护。
电压继电器的符号如图1-24所示。
图1-24 电压继电器的符号
3.中间继电器
中间继电器实质上是一种电磁式电压继电器,其特点是触头数量较多(一般有4常开、4常闭,共8对),在电路中起增加触头数量和中间放大的作用。由于中间继电器只要求线圈电压为零时能可靠释放,对动作参数无要求,故中间继电器没有调节装置。JZ7系列中间继电器实物与结构如图1-25所示,中间继电器的符号如图1-26所示。
中间继电器的线圈属于电压线圈,但它的触头数量较多,触头容量较大(额定电流为5~10A)且动作灵敏。其主要用途是:当其他继电器的触头数量或触头容量不够时,可借助中间继电器来扩大触头数量或触头容量,起到中间转换作用。
电磁式中间继电器常用的有JZ7、JDZ2和JZ14等系列。引进产品则有MA406N系列、3TH系列(国内型号为JZC)。JZ14系列中间继电器型号、规格和技术数据见表1-3。
图1-25 JZ7系列中间继电器实物与结构
1—静铁心 2—短路环 3—衔铁 4—常开触头 5—常闭触头 6—释放弹簧 7—线圈 8—缓冲弹簧
图1-26 中间继电器的符号
表1-3 JZ14系列中间继电器型号、规格和技术数据
JZ14系列中间继电器型号含义如下:
4.电流继电器
电流继电器用于电力拖动系统的电流保护和控制。其线圈串联接入主电路,用来感测主电路的电流;触头接入控制电路,为执行元件。电流继电器反映的是电流信号。常用的电流继电器有欠电流继电器和过电流继电器两种。
(1)欠电流继电器 欠电流继电器在电路中起欠电流保护作用。其吸引电流为电路额定电流的30%~65%,释放电流为电路额定电流的10%~20%。因此,在电路正常工作时,衔铁是吸合的,当电流降低到某一整定值时,电流继电器释放,控制电路失电,此时接触器即可及时分断电路。
(2)过电流继电器 过电流继电器在电路正常工作时不动作,其整定范围通常为电路额定电流的1.1~4倍,当被保护电路的电流高于额定值,达到过电流继电器的整定值时,衔铁吸合,触头动作,控制电路失电,此时接触器即可及时分断电路,对电路起过电流保护作用。
电流继电器的符号如图1-27所示。
图1-27 电流继电器的符号
常见的电磁式继电器有JT3系列直流电磁式继电器和JT4系列交流电磁式继电器,更新一些的产品有JT9、JT10、JL12、JL14和J27等系列,其中JL14系列为交直流电流继电器,J27系列为交流中间继电器。
5.其他继电器
(1)时间继电器 在电力拖动控制系统中,不仅需要动作迅速的继电器,而且需要当线圈通电或断电以后其触头经过一定延时再动作的继电器,这种继电器称为时间继电器,是利用电磁原理或机械动作原理实现触头延时接通或断开的自动控制电器,其种类很多,常用的有电磁式、空气阻尼式、电动式和电子式等时间继电器。
时间继电器按延时方式可分为通电延时型和断电延时型。通电延时型在接收输入信号后延迟一定时间,输出信号才发生变化;当输入信号消失后,输出信号瞬时复原。断电延时型在接收输入信号后,瞬时产生相应的输出信号,当输入信号消失后,延迟一定时间,输出信号才复原。时间继电器的符号如图1-28所示。
图1-28 时间继电器的符号
1)直流电磁式时间继电器。在直流电磁式电压继电器的铁心上增加一个阻尼铜套,即可构成直流电磁式时间继电器,如图1-29所示。它是利用电磁阻尼原理产生延时的。由电磁感应定律可知,在继电器线圈通断电过程中,铜套内将产生感应电动势,并流过感应电流,此电流产生的磁通总是阻碍原磁通变化。继电器通电时,由于衔铁处于释放位置,气隙大,磁阻大,磁通小,铜套阻尼作用相对也小,因此衔铁吸合时延时不显著(一般忽略不计)。当继电器断电时,磁通变化量大,铜套阻尼作用也大,使衔铁延时释放而起到延时作用。因此,这种继电器仅用作断电延时。
2)空气阻尼式时间继电器。空气阻尼式时间继电器是利用空气阻尼原理获得延时的。延时方式有通电延时型和断电延时型两种。其外观区别在于:当衔铁位于铁心和延时机构之间时为通电延时型;当铁心位于衔铁和延时机构之间时为断电延时型。空气阻尼式时间继电器由电磁机构、延时机构和触头系统三部分组成,电磁机构为直动式双E型,触头系统借用LX5型微动开关,延时机构采用气囊式阻尼器。
图1-29 带有阻尼铜套的铁心示意图
1—铁心 2—阻尼铜套 3—绝缘层 4—线圈
图1-30所示为JS7-A系列空气阻尼式时间继电器实物与结构,图1-31所示为其结构原理图。现以通电延时型为例说明其工作原理。当线圈1通电后,衔铁3吸合,活塞杆6在塔形弹簧7作用下带动活塞13及橡胶膜9向上移动,橡胶膜下方空气室的空气变得稀薄,形成负压,活塞杆只能缓慢移动,其移动速度由进气孔气隙大小来决定。经一段延时后,活塞杆6通过杠杆15压动微动开关14,使其触头动作,起到通电延时作用。
图1-30 JS7-A系列空气阻尼式时间继电器实物与结构
1—线圈 2—释放弹簧 3—衔铁 4—铁心 5—弹簧片 6—瞬时触头 7—杠杆 8—延时触头 9—调节螺钉 10—推杆 11—活塞杆 12—塔形弹簧
图1-31 JS7-A系列空气阻尼式时间继电器结构原理图
1—线圈 2—铁心 3—衔铁 4—释放弹簧 5—推板 6—活塞杆 7—塔形弹簧 8—弱弹簧 9—橡胶膜 10—空气室壁 11—调节螺钉 12—进气孔 13—活塞 14、16—微动开关 15—杠杆
当线圈断电时,衔铁3释放,橡胶膜9下方空气室内的空气通过活塞13肩部所形成的单向阀迅速排出,使活塞杆6、杠杆15、微动开关14和16迅速复位。由线圈1通电至触头动作的一段时间即为时间继电器的延时时间,延时长短可通过调节螺钉11调节进气孔气隙大小而改变。
微动开关16在线圈1通电或断电时,在推板5的作用下都能瞬时动作,其触头为时间继电器的瞬动触头。
JS7-A系列空气阻尼式时间继电器主要技术参数见表1-4。
表1-4 JS7-A系列空气阻尼式时间继电器主要技术参数
3)电子式时间继电器。电子式时间继电器在时间继电器中已成为主流产品,电子式时间继电器是采用晶体管或集成电路和电子器件等构成的,按其构成可分为晶体管式时间继电器和数字式时间继电器,多用于电力传动、自动顺序控制及各种过程控制系统中,并以其延时范围宽、精度高、体积小、动作可靠的优势逐步取代传统的电磁式、空气阻尼式等时间继电器。
①晶体管式时间继电器。晶体管式时间继电器是以RC电路电容充电时,电容两端的电压逐步上升的原理为延时基础制成的。常用的晶体管式时间继电器有JS14A、JS15、JS20、JSJ、JSB和JS14P等系列。其中,JS20系列晶体管式时间继电器是全国统一设计产品,延时范围有0.1~180s、0.1~300s、0.1~3600s三种,电气寿命达10万次,适用于交流50Hz、电压380V及以下或直流110V及以下的控制电路中。JS20系列晶体管式时间继电器主要技术参数见表1-5。
②数字式时间继电器。晶体管式时间继电器是利用RC电路充放电原理制成的。由于受延时原理的限制,不容易实现长延时,且延时精度易受电压、温度的影响,精度较低,延时过程也不能显示,因而影响了它的使用。随着半导体技术,特别是集成电路技术的进一步发展,采用新延时原理的时间继电器——数字式时间继电器便应运而生,其各种性能指标也得到大幅度提高。目前最先进的数字式时间继电器内部装有微处理器。
目前市场上的数字式时间继电器型号很多,有HUZS-S、DH48S、DH14S、DH11S、JSS1和JS14S等系列。其中,JS14S系列与JS14、JS14P和JS20系列时间继电器兼容,取代方便。HUZS-S系列数字式时间继电器(图1-32)为引进技术及工艺制造的,可替代进口产品,延时范围为0.01s~99h99min,并可任意预置。另外,还有从日本富士公司引进生产的ST系列等。
表1-5 JS20系列晶体管式时间继电器主要技术参数
图1-32 HUZS-S系列数字式时间继电器
JS20系列晶体管式时间继电器型号含义如下:
4)时间继电器的选用。选用时间继电器时应注意:线圈(或电源)的电流种类和电压等级应与控制电路相同;按控制要求选择延时方式和触头形式;校核触头数量和容量,若不够,可用中间继电器进行扩展。对于电源电压波动大的场合,选用空气阻尼式比选用晶体管式好。环境温度变化较大的场合,不宜采用晶体管式时间继电器。
(2)热继电器 电动机在实际运行中,常会遇到过载情况,但只要过载不严重、时间短,绕组温升不超过允许温升,这种过载就是允许的。如果过载情况严重、时间长,则会加速电动机绝缘的老化,缩短电动机的使用年限,甚至烧毁电动机,因此必须对电动机进行过载保护。
热继电器(FR)主要用于电力拖动系统中电动机负载的过载保护,是一种具有反时限(延时)过载保护特性的过电流继电器,也可以用于其他电气设备的过载保护。
1)热继电器结构与工作原理。热继电器主要由热元件、双金属片和触头组成,如图1-33所示,热元件由发热电阻丝做成。双金属片由两种热膨胀系数不同的金属碾压而成,当双金属片受热时,会出现弯曲变形。使用时,把热元件串联于电动机的主电路中,而常闭触头串联于电动机的控制电路中。
图1-33 热继电器实物与结构原理
1—热元件 2—双金属片 3—导板 4—触头复位
当电动机正常运行时,热元件产生的热量虽能使双金属片弯曲,但还不足以使热继电器的触头动作。当电动机过载时,双金属片弯曲位移增大,推动导板使常闭触头断开,从而切断电动机控制电路以起保护作用。热继电器动作后一般不能自动复位,要等双金属片冷却后按下复位按钮复位。热继电器动作电流的调节可以借助旋转凸轮使其处于不同位置的方式来实现。热继电器的符号如图1-34所示。
2)热继电器的型号及选用。我国目前生产的热继电器主要有JR0、JR1、JR2、JR9、R10、JR15和JR16等系列。
JR1、JR2系列热继电器采用间接受热方式,其主要缺点是双金属片靠热元件间接加热,热耦合较差;双金属片的弯曲程度受环境温度影响较大,不能正确反映负载的过电流情况。
图1-34 热继电器的图形及文字符号
JR15、JR16等系列热继电器采用复合加热方式并采用了温度补偿元件,因此能较正确反映负载的工作情况。
JR1、JR2、JR0和JR15系列热继电器均为两相结构,是双热元件的热继电器,可以用作三相异步电动机的均衡过载保护和定子绕组星形联结的三相异步电动机的断相保护,但不能用作定子绕组为△连接的三相异步电动机的断相保护。
JR16和JR20系列热继电器均为带有断相保护的热继电器,具有差动式断相保护机构。
热继电器的选择主要根据电动机定子绕组的连接方式来确定型号,在三相异步电动机电路中,对星形联结的电动机可选两相或三相结构的热继电器,一般采用两相结构的热继电器,即在两相主电路中串联热元件。对于三相异步电动机,定子绕组为三角形联结的电动机必须采用带断相保护的热继电器。
JR20系列型号含义如下:
(3)速度继电器与干簧继电器 输入信号是非电信号,而只有当非电信号达到一定值时,才有信号输出的电器为信号继电器,常用的有速度继电器与干簧继电器。前者输入信号为电动机的转速,后者输入信号为磁场,输出信号皆为触头的动作。
1)速度继电器。从结构上看,速度继电器与交流电机类似,主要由定子、转子和触头三部分组成。定子的结构与笼型异步电动机相似,是一个笼型空心圆环,由硅钢片冲压而成,并装有笼型绕组,转子是一个圆柱形永久磁铁。速度继电器的轴与电动机的轴相连,定子空套在转子外围。当电动机转动时,速度继电器的转子(永久磁铁)随之转动,在空间产生旋转磁场,定子绕组切割磁场产生感应电动势和电流。此电流和永久磁铁的磁场作用产生转矩,使定子向转子转动方向旋转一定的角度,与定子装在一起的摆锤推动触头动作,使常闭触头断开,常开触头闭合。当电动机转速低于某一值时,定子产生的转矩减小,在弹簧力的作用下动触头复位。速度继电器实物与结构如图1-35所示,其符号如图1-36所示。
图1-35 速度继电器实物与结构
1—可动支架 2—转子 3、8—定子 4—端盖 5—连接头 6—电动机轴 7—转子(永久磁铁) 9—定子绕组 10—胶木摆杆 11—簧片(动触头) 12—静触头
图1-36 速度继电器的符号
速度继电器型号含义如下:
常用的感应式速度继电器有JY1和JFZO系列。JY1系列能在3000r/min的转速下可靠工作。JFZO系列的触头动作速度不受定子柄偏转快慢的影响,触头改用微动开关。JFZO系列中的JFZO-1型适用于300~1000r/min转速,JFZO-2型适用于1000~3000r/min转速。速度继电器有两对常开、常闭触头,分别对应于被控电动机的正、反转运行。一般情况下,速度继电器的触头,在转速达120r/min时应能动作,100r/min左右时应能恢复正常位置。速度继电器应根据电动机的额定转速、控制要求进行选择。
2)干簧继电器。干式舌簧继电器简称干簧继电器,是近年来迅速发展起来的一种新型继电器,也是一种具有密封触头的电磁式继电器。干簧继电器可以反映电压、电流、功率以及电流极性等信号,在检测、自动控制和计算机控制技术等领域中应用广泛。干簧继电器主要由干式舌簧片与励磁线圈组成。干式舌簧片(触头)是密封的,由铁镍合金做成,舌簧片的接触部分通常镀有贵重金属(如金、铑、钯等),以图接触良好,具有优良的导电性能。触头密封在充有氮气等不易发生化学反应的气体的玻璃管中,因而有效地防止了尘埃的污染,减少了触头的腐蚀,提高了工作可靠性。其结构原理与实物如图1-37所示,符号如图1-38所示。
图1-37 干簧继电器结构原理与实物
当线圈通电后,管中两干簧片的自由端分别被磁化成N极和S极并相互吸引,因而接通被控电路。线圈断电后,干簧片在本身的弹力作用下分开,将电路切断。干簧继电器常用于电梯电气控制中。目前国产干簧继电器有JAG2-1A型和JAG2-2A型等。