1.2.3 智能物联网特征
智能物联网特质与内含如下所述。
人机物融合计算[12, 13]:随着物联网、人工智能等技术的发展,计算系统正从信息空间拓展到包含人类社会、信息空间和物理世界的三元空间,人机物三元融合计算将成为重要形态。它能有效协同与融合人、机、物异质要素,进而构建新型智能计算系统,是解决智能制造、智慧城市、社会治理等国家重大需求的有力支撑。
●人(Human):主要体现为社会空间中的广大普通用户及其携带的移动或可穿戴设备,其发挥的作用一方面为人类智慧(包括个体或群体智能),另一方面涵盖基于移动设备的群智感知计算。
●机(Machine):主要体现为信息空间中丰富的互联网应用及云端服务,在传统互联网和移动互联网等发展背景下,信息空间集聚了海量、多模态的数据和多样化的计算资源。
●物(Things):主要体现为物理空间中泛在分布的物联网终端和边缘设备,在物联网发展的背景下,各种各样的智能物联网终端不断涌现,为感知和理解物理空间动态提供了重要支撑。
人、机、物三种要素在同一环境或应用场景下相互联结,和谐共生,但彼此能力差异、数据互补,需要通过协作交互来实现能力增强,进而完成复杂的感知和计算任务。
泛在智能感知:在智能物联网时代,利用无处不在的感知资源,包括摄像头、RFID、Wi-Fi、红外、声波、毫米波等,产生丰富的多模态感知数据,进而通过机器学习和深度学习等方法实现对目标(人、环境或事件等)行为的准确感知。
情境自适应通信:针对不断变化的网络资源、连接拓扑和数据传输等情境,从实时获取的网络数据中提取情境信息,进而通过自适应机制实现情境适配的低成本、高效通信。
物联网终端智能:智能物联场景中,将深度学习模型(如实时视频数据处理)离线部署在资源受限且环境多变的物联网终端设备执行逐渐成为一种趋势,其具有低计算延时、低传输成本、保护数据隐私等优势,然而硬件资源限制和环境动态变化对终端智能算法带来了很大挑战。针对受限环境设计相适应的轻量级深度学习模型是智能物联网的一个关键问题。
分布式群体智能:针对单个终端智能体数据和经验有限、模型训练能力弱、应用场景和任务多变等问题,与现有集中式学习模型和框架相区别,在分布式环境下实现多智能终端协作增强学习是智能物联网发展的重要趋势。
云边端协同计算:针对海量的智能物联网数据及实时性、隐私性等数据处理需求,将边缘计算技术引入物联网,形成“端-边-云”协同计算的智能物联网体系架构,高效、及时地处理业务数据。