参考文献
[1] 王祝文,刘菁华,任莉.基于K均值动态聚类分析的地球物理测井岩性分类方法[J].东华理工大学学报(自然科学版),2009(2):56-60.
[2] Janning R,Busche A,Horváth T,et al.Buried pipe localization using an iterative geometric clustering on GPR data[J].Artificial Intelligence Review,2014,42(3):403-425.
[3] Janning R,HorváthT,Busche A,et al.GamRec:A clustering method using geometrical background knowledge for GPR data preprocessing[C]//IFIP International Conference on Artificial Intelligence Applications and Innovations.Springer,Berlin,Heidelberg,2012:347-356.
[4] Dou Q,Wei L,Magee D R,et al.Real-time hyperbola recognition and fitting in GPR data[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(1):51-62.
[5] Zhou X,Chen H,Li J.An automatic GPR B-scan image interpreting model[J].IEEE Transactions on Geoscience and Remote Sensing,2018,56(6):3398- 3412.
[6] Jin T,Zhou Z,Song Q,et al.A novel SVM for ground penetrating synthetic aperture radar landmine detection[J].Journal of electronics (china),2008,25(1):70-75.
[7] 胡进峰,周正欧.基于核方法和主成分分析(PCA)的探地雷达目标特征提取新方法[J].信号处理,2005,21(6):581-584.
[8] 高翔,姬光荣,姬婷婷,等.基于探测过程建模的探地雷达多目标识别[J].电波科学学报,2011,26(3):574-580.
[9] 陈德莉,黄春琳,粟毅.用统计方法和Hough变换进行GPR目标检测与定位[J].电子学报,2004(9):1468-1471.
[10] Maas C,SchmalzlJ.Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar[J].Computers & geosciences,2013,58:116-125.
[11] Torrione P A,MortonK D,Sakaguchi R,et al.Histograms of oriented gradients for landmine detection in ground-penetrating radar data[J].IEEE transactions on geoscience and remote sensing,2013,52(3):1539-1550.
[12] Liu Y,Wang M,Cai Q.The target detection for GPR images based on curve fitting[C]//2010 3rd International Congress on Image and Signal Processing.IEEE,2010,6:2876-2879.
[13] Frigui H,Gader P.Detection and discrimination of land mines in ground-penetrating radar based on edge histogram descriptors and a possibilistic k-nearest neighbor classifier[J].IEEE Transactions on Fuzzy Systems,2008,17(1):185-199.
[14] 张春城,周正欧.浅地层探地雷达自动目标检测与定位研究[J].电子与信息学报,2005(7):1065-1068.
[15] Yue,Yu,Chi-Chih,et al.Modified entropy-based fully polarimetric target classification method for ground penetrating radars (GPR)[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10(10):4304-4312.
[16] Frigui H,HamdiA,Missaoui O,et al.Landmine detection using mixture of discrete hidden Markov models[C]//Detection and Sensing of Mines,Explosive Objects,and Obscured Targets XIV.International Society for Optics and Photonics,2009,730323:1-730323:8.
[17] Gader P D,MystkowskiM,Zhao Y.Landmine detection with ground penetrating radar using hidden Markov models[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(6):1231-1244.
[18] Missaoui O,FriguiH,Gader P.Land-Mine detection with ground- penetrating radar using multistream discrete hidden markov models[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(6):2080-2099.
[19] Manandhar A,TorrioneP A,Collins L M,et al.Multiple-instance hidden Markov model for GPR-based landmine detection[J].IEEE transactions on geoscience and remote sensing,2014,53(4):1737-1745.
[20] Xuping,Zhang,Bolton,et al.A new learning method for continuous hidden markov models for subsurface landmine detection in ground penetrating radar[J].Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(3):813-819.
[21] Dou Q,Wei L,Magee D R,et al.Real-time hyperbola recognition and fitting in GPR data[J].IEEE Transactions on Geoscience and Remote Sensing,2016,55(1):51-62.
[22] Zhou X,Chen H,Li J.An automatic GPR B-scan image interpreting model[J].IEEE Transactions on Geoscience and Remote Sensing,2018,56(6):3398- 3412.
[23] Lei W,Hou F,Xi J,et al.Automatic hyperbola detection and fitting in GPR B-scan image[J].Automation in Construction,2019,106:102839.
[24] 郝彤,赵杰.面向双曲线形态的探地雷达图像识别技术综述[J].电子学报,2019,47(6):1366-1372.
[25] 孔祥维,石浩.形状约束的Snake算法在探地雷达图像目标自动提取中的应用[J].物探化探计算技术,2001(4):333-337.
[26] Zheng J,TengX,Liu J,et al.Convolutional neural networks for water content classification and prediction with ground penetrating radar[J].IEEE Access,2019,7:185385-185392.
[27] Wang J,Chen K,Liu H,et al.Deep learning-based rebar clutters removal and defect echoes enhancement in GPR images[J].IEEE Access,2021,99:87207- 87218.
[28] Sakaguchi R T,MortonJr K D,Collins L M,et al.Recognizing subsurface target responses in ground penetrating radar data using convolutional neural networks[C]//Detection and Sensing of Mines,Explosive Objects,and Obscured Targets XX.International Society for Optics and Photonics,2015,9454:94541A.
[29] Besaw L E,StimacP J.Deep convolutional neural networks for classifying GPR B-scans[C]//Detection and Sensing of Mines,Explosive Objects,and Obscured Targets XX.International Society for Optics and Photonics,2015,9454:385-394.
[30] Pham M T,LefèvreS.Buried object detection from B-scan ground penetrating radar data using Faster-RCNN[C]//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium.IEEE,2018:6804-6807.
[31] He Y,Li B,Guo Y,et al.An interpretation model of GPR point data in tunnel geological prediction[C]//Eighth International Conference on Graphic and Image Processing (ICGIP 2016).International Society for Optics and Photonics,2017,10225:520-525.
[32] Ozkaya U,SeyfiL.Deep dictionary learning application in GPR B-scan images[J].Signal,Image and Video Processing,2018,12(8):1567-1575.
[33] Giovanneschi F,MishraK V,Gonzalez-Huici M A,et al.Dictionary learning for adaptive GPR landmine classification[J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(12):10036-10055.
[34] 王辉,欧阳缮,廖可非,等.基于深度学习的GPR B-SCAN图像双曲线检测方法[J].电子学报,49(5):953.
[35] Zhang X,Han L,Robinson M,et al.A GANs-based deep learning framework for automatic subsurface object recognition from ground penetrating radar data[J].IEEE Access,2021,9:39009-39018.
[36] Hou F,Lei W,Li S,et al.Improved mask R-CNN with distance guided intersection over union for GPR signature detection and segmentation[J].Automation in Construction,2021,121:103414.
[37] Ozkaya U,MelganiF,Bejiga M B,et al.GPR B scan image analysis with deep learning methods[J].Measurement,2020,165:107770.