本章介绍深度学习相关的基础理论知识。首先介绍深度学习与人工智能的相关概念,然后从感知机等初等神经网络结构出发,阐述深度学习模型的前向传播和反向传播计算理论。同时系统性地介绍常见的前馈神经网络和卷积神经网络,以及深度学习实践中模型常用的调优方法,包括多种权重学习的最优化算法和模型过拟合的调整方法。