机器学习技术及应用
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

内容简介

机器学习是人工智能的一个方向。它是一门多领域交叉学科,涉及概率论、统计学、矩阵论、神经网络、计算机等多门学科。其目标是使用计算机模拟或实现人类学习活动,从现有大量的数据中学习,利用经验不断改善系统性能。机器学习步骤一般分为获取数据、数据预处理、建立模型、模型评估和预测。

本书共6章。第1章节主要介绍机器学习的基本概念及其发展史、机器学习分类、常见机器学习算法及其特点;第2章搭建机器学习开发环境,主要包括Anaconda\PyCharm\Python软件的安装及使用,以及常见机器学习库的介绍和安装使用方法;第3章介绍监督学习的4个经典算法:线性回归、决策树、k近邻和支持向量机算法,其重点在算法的应用;第4章介绍主成分分析降维算法、K-means聚类算法;第5章介绍人工神经网络基础,并通过房价预测和手写数字识别实例进行验证;第6章介绍强化学习的基本概念,有模型学习和无模型学习,最后介绍了Q-Learning算法和Sarsa算法。

本书由人工智能技术专业教师和英特尔FPGA中国创新中心的工程师们合力编写,讲解了大量的具体程序案例,涵盖大部分机器学习算法,教师和学生可以根据应用需求,选择对应的知识点和算法。本书所有程序均已经在英特尔FPGA中国创新中心AILab实训平台上验证实现。

本书可作为高职高专院校电子信息类相关专业教材,也可作为科技人员的参考用书。