深入浅出隐私计算:技术解析与应用实践
上QQ阅读APP看书,第一时间看更新

1.5 隐私计算技术的应用场景

隐私计算技术可以为各参与方提供安全的合作模式,在确保数据合规使用的情况下,实现数据共享和数据价值挖掘,有着广泛的应用前景。目前,隐私计算技术的应用场景还在不断扩展。

1.5.1 金融行业

在金融行业,数据渠道融合与风险控制是业务实施的重要部分。作为数据隐私安全的重要保障,隐私计算技术在金融领域的应用前景广阔。隐私计算技术可以应用于金融行业的获客和风控,比如多家金融机构在不泄露客户个人信息的前提下对客户进行联合画像和产品推荐;在多头借贷等场景下,在不泄露客户已有贷款数额、各金融机构所拥有的黑名单等信息的前提下有效评估客户的信用情况,降低违约风险。

以征信系统为例,银行、小贷公司等金融机构需要通过多个信息渠道对潜在用户的历史记录进行多维度计算分析。但由于这些数据具有很高的隐私性,且很多信息渠道并不具备足够安全可靠的信息传输管控技术,征信系统的数据丰富性不足或者维度缺失。如图1-5所示,通过隐私计算中的多方安全计算技术,各金融机构、信息渠道可形成征信系统联盟,各方数据无须离开本地就能提供数据分析服务。

025-01

图1-5 基于多方安全计算技术的征信系统联盟

1.5.2 医疗健康行业

在医疗健康行业,利用人工智能技术针对病情与病例数据建立机器学习模型并训练,可以提高医疗科研与病情推断的效率,提升医疗服务的精准度。但是由于之前缺乏统筹规划和顶层设计,各地医院的信息系统独立且分散;同时,由于医疗数据属于极度隐私的信息,为了避免出现合规风险,各医疗机构普遍对数据持保守态度,病情与病例数据不允许离院共享,各医疗渠道信息的数据融合难度极大,阻碍了医疗系统的智能化发展。隐私计算技术能够保护数据隐私,有望打破医疗数据孤岛现象,在医疗行业大有可为。比如利用隐私计算中的联邦学习技术,各医疗机构可实现在原始数据不离院的情况下进行联合建模,如图1-6所示。事实上,在医疗健康领域,隐私计算技术已经逐步落地。

026-01

图1-6 基于联邦学习的医疗场景

1.5.3 政务行业

在政务行业,随着数字经济的发展,智慧城市与政务大数据逐步深入人心,各地政府不断加强推动大数据的规划设计,多地政府设立大数据发展局、大数据管理局等相关管理机构。政务数据涉及医保、社保、公积金、税务、司法、交通等方方面面,隐私安全尤为重要,如能利用隐私计算技术打通政务数据、挖掘数据潜能,那么智慧城市建设必将如虎添翼。举例来说,隐私计算技术可以提供政府数据与电信企业、互联网企业等社会数据融合的解决方案,比如可以联合多部门的数据对道路交通状况进行预判,实现车辆路线导航的最优规划,减缓交通堵塞。目前,在一些地方政府的相关规划里,隐私计算技术有望成为下一个应用推广的重点。

未来,隐私计算技术将广泛应用于金融、保险、医疗、物流、汽车等众多拥有隐私数据的领域,在解决数据隐私保护问题的时候,也帮助解决行业内数据孤岛问题,为大量AI模型的训练和技术落地提供一种合规的解决方案。