深入浅出隐私计算:技术解析与应用实践
上QQ阅读APP看书,第一时间看更新

1.3 隐私计算技术的发展脉络

现在,除了MPC技术外,隐私计算领域还呈现出更多新的技术特点和解决方案。目前,从技术层面来说,隐私计算主要有两类主流解决方案:一类是采用密码学和分布式系统;另一类是采用基于硬件的可信执行环境(Trusted Execution Environment,TEE)。

目前,密码学方案以MPC为代表,通过秘密共享、不经意传输、混淆电路、同态加密等专业技术来实现。近几年,其性能逐渐得到提升,在特定场景下已具有实际应用价值。基于硬件的可信执行环境方案是构建一个硬件安全区域,隐私数据仅在该安全区域内解密出来进行计算(安全区域之外,数据都以加密的形式存在)。其核心是将数据信任机制交给像英特尔、AMD等硬件方,且因其通用性较高且计算性能较好,受到了较多云服务商的推崇。这种通过基于硬件的可信执行环境对使用中的数据进行保护的计算也被称为机密计算(Confidential Computing)。另外,在人工智能大数据应用的大背景下,近年来比较火热的联邦学习也是隐私计算领域主要推广和应用的方法。

图1-3展示了各项隐私计算技术的发展时间线。可以看出,隐私计算技术还是比较“年轻”的技术。

020-01

图1-3 隐私计算技术的发展时间线

《腾讯隐私计算白皮书2021》将当前隐私计算的体系架构总结为图1-4。一般而言,越是上层,其面临的情况可能越复杂,往往会综合运用下层中的多项技术进行安全防护。虽然根据多方安全计算的定义,联邦学习(也就是图1-4中的“联合学习”)也应该属于广义的“多方安全计算”范畴,但可能是由于当前机器学习比较火热,业界普遍将联邦学习单独列出。本书将在安全保护技术篇重点介绍图1-4中“安全保护技术”这一层的相关技术,并在应用技术篇介绍联合学习(即联邦学习)以及属于多方安全计算应用的PSI技术。另外,由于可信计算与可信执行环境的特殊关系,本书也将在第8章中一并讲述。

021-01

图1-4 隐私计算体系架构