金融产品方法论
上QQ阅读APP看书,第一时间看更新

3.2.3 反欺诈配置层

对于供应链金融而言,我们在解决上下游企业融资难的问题时,也要确保随之而来的金融欺诈风险可控。这关键在于反欺诈风控系统的规则配置。我们可以通过配置系统规则,比如审核流程的配置、产品参数的配置、业务表单的配置、规则引擎的配置等来实现。

进入数字金融时代,数字化技术支撑供应链金融构建“数据、技术与场景”三位一体的反欺诈系统。数字金融反欺诈从数据采集、数据清洗、特征工程、算法研究、决策引擎、监控迭代等方面,通过数字技术实现规则配置的线上化、流程化和数字化,从而降低开发成本,如图3-13所示。常见的反欺诈系统有用户行为风险识别引擎、人行征信系统、黑名单管理系统等。

图3-13 数字金融反欺诈系统

以黑名单管理系统为例,我们可以灵活配置黑名单隔离规则,比如设备黑名单、IP及LBS黑名单、中介黑名单、手机号码黑名单、法院黑名单、逾期黑名单等决策。数字金融反欺诈策略可分为数据采集、数据清洗、特征工程、算法研究、决策引擎、监控迭代等,并在规则配置后对参数进行动态优化。

供应链金融欺诈归根到底就是企业经营行为的欺诈。以汽车融资租赁为例,整个交易环节涉及出租人和承租人的投融资、供应商的设备促销、租赁资产交易、资产后续处置等,从形式上看确实存在交易,但没有实际的产业输出,如图3-14所示。汽车融资租赁的欺诈风险包括申请欺诈、信用低和坏账。

图3-14 融资租赁欺诈

·申请欺诈:资料造假(企业经营数据人为作假)、身份冒用(冒用他人的身份证信息)、用途不明(贷款资金没有明确的使用场景)。

·信用低:多头借贷(借款人向多家金融平台提出借贷申请)、合同诈骗(通过虚构事实、隐瞒真相、设定陷阱等手段,诱使对方与之签订或履行合同)、虚假交易(不存在、不真实的交易行为)。

·坏账:人车失踪(联系不到借款人且无法定位跟踪车辆)、经营异常(企业被工商局列入经营异常)、恶意拖欠(企业或个人恶意拖欠贷款)。