译者序
近年来,深度学习技术取得了突破性进展,并且在计算机视觉、自然语言处理等多个领域取得了非常成功的应用,甚至在一定程度上改变了人们的日常生活方式和工作方式。深度学习的繁荣发展和成功应用极大地激发了人们对深度学习技术的学习热情。然而,对于那些刚开始进入机器学习领域的初学者来说,较好地掌握和应用深度学习技术并不是一件容易的事情,因为深度学习技术通常基于数学模型和算法设计,需要一定的抽象思维能力和数学知识。具有一定专业深度且可读性好的深度学习入门教材对于深度学习领域初学者的帮助显然是至关重要的。本书正是这样的一部优秀教材,全书从一个完全没有机器学习基础的程序员的视角出发,通过一系列具体的应用实例,使用通俗易懂的语言系统地介绍了深度学习的思想内涵、基本理论和重要算法,通过知识介绍、源代码片段剖析、应用示例和一些专门技巧的讲解,循序渐进地展示了深度学习模型的设计技巧和模型训练的算法思维,逐步消除了深度学习模型和算法的认知盲点,使读者能够通过自己的努力建立强大的深度学习基础。本书的特点主要体现在如下两个方面:
第一,入门起点比较低,可读性非常好。本书假定读者先前没有接触过神经网络和深度学习,甚至没有接触过机器学习。书中从机器学习的基本概述开始,指导读者建立流行的Python程序框架,并以循序渐进的方式介绍流行的监督神经网络架构(例如卷积神经网络(CNN)、循环神经网络(RNN)和生成对抗网络(GAN))以及非监督神经网络架构(例如自编码器(AE)、变分自编码器(VAE)和受限玻耳兹曼机(RBM))。作者非常注重使用生动有趣的应用实例实现对概念和原理的解释,使用大量的可视化方式直观形象地表示潜在空间等比较抽象的概念,并提出一些发人深省的问题,让读者通过思考来超越那些似乎显而易见的问题,引导读者完成对相关概念和原理的深层理解。
第二,知识结构新颖,知识内容的系统性和专业性强。本书的知识内容主要由深度学习快速入门、无监督深度学习、监督深度学习这三个部分组成。第一部分介绍深度学习的基本知识、开发平台、数据准备与预处理技术,以及网络模型设计与训练的基础知识;第二部分系统地介绍自编码器、深度自编码器、变分自编码器、受限玻尔兹曼机等无监督学习模型,通过具体应用实例细致地探讨潜在空间、特征提取等深度学习和表示学习的核心概念,以及模型训练的基本技巧,帮助读者打下扎实的深度学习理论基础;第三部分从现有密集网络的局限性出发,引出稀疏网络的概念以及相应的深度卷积网络、深度循环网络,以及生成对抗网络,系统地介绍这些网络模型的设计原理、训练算法,以及在计算机视觉和自然语言处理等领域的应用技术。全书知识结构非常清晰且很有创意,知识内容具有较好的完备性、系统性和专业性。
本书内容丰富,文字表述清晰,实例讲解详细,图例直观形象,适合作为高等学校人工智能、智能科学与技术、数据科学与大数据技术、计算机科学与技术以及相关专业的本科生及研究生深度学习课程的入门教材,也可供工程技术人员和自学读者学习参考。
本书由汪雄飞、陈朗、汪荣贵共同翻译完成。感谢研究生张前进、江丹、孙旭、尹凯健、王维、张珉、李婧宇、修辉、雷辉、张法正、付炳光、李明熹、董博文、麻可可、李懂、刘兵、王耀、杨伊、陈震、沈俊辉、黄智毅、禚天宇等同学提供的帮助,感谢合肥工业大学、广东外语外贸大学、机械工业出版社华章公司的大力支持。
由于时间仓促,译文难免存在不妥之处,敬请读者不吝指正!
译者
2021年6月