参考文献
[1]U.S.Energy Information Administration,International Energy Outlook 2011,2011.
[2]Y.F.Fan,Z.Q.Hu,Y.Z.Zhang,et al.Deterioration of compressive property of concrete under simulated acid rain environment.Construction and Building Materials,2010,24:1975-1983.
[3]F.C.Menz,H.M.Seip.Acid rain in Europe and the United States:an update.Environmental Science & Policy,2004,7:253-265.
[4]Francois Pichot,J.Roland Pitts,Brian A.Gregg.Low-Temperature Sintering of TiO2 Colloids:Application to Flexible Dye-Sensitized Solar Cells.Langmuir,2000,16:5626-5630.
[5]C.E.Fritts.New Form of selenium cell,with some remarkable electncal discoveries made by its use.Proc Am Assoc Adv Sci,1883,33:97.
[6]D.M.Chapin,C.S.Fuller,G.L.Pearson.A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power.Journal of Applied Physics,1954,25:676.
[7]R.W.Miles,K.M.Hynes,I.Forbes.Photovoltaic solar cells:An overview of state-of-the-art cell development and environmental issues.Progress in Crystal Growth and Characterization of Materials,2005,51:1-42.
[8]J.Zhao,A.Wang,P.Alterman,et al.Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss.Applied Physics Letters,1995,66:3636.
[9]Fernando Villar,Aldrin Antony,Jordi Escarré,et al.Amorphous silicon thin film solar cells deposited entirely by hot-wire chemical vapour deposition at low temperature(<150℃).Thin Solid Films,2009,517:3575-3577.
[10]Hiromu Takatsukaa,Yasuhiro Yamauchia,Keisuke Kawamurab,et al.World's largest amorphous silicon photovoltaic module.Thin Solid Films,2006,506-507:13-16.
[11]A.Zaban,O.1.Micic,B.A.Gregg,et al.Photosensitization of Nanoporous TiO2 Electrodes with InP Quanturn Dots.Langmuir,1998,14:3153-3156.
[12]Alexander H.Ip,Susanna M.Thon,Sjoerd Hoogland,et al.Hybrid passivated colloidal quantum dot solids.Nature Nanotechnology,2012,7:577-582.
[13]A.Henglein,M.Gutiérrez,C.-H.Fischer.Photochemistry of Colloidal Metal Sulfides 6.Kinetics of Interfacial Reactions at ZnS-Particles.Berichte der Bunsengesellschaft für physikalische Chemie,1984,88:170-175.
[14]S.Gelover,P.Mondragón,A.Jiménez.Titanium dioxide sol-gel deposited over glass and its application as a photocatalyst for water decontamination.Journal of Photochemistry and Photobiology A:Chemistry,2004,165:241-246.
[15]G.Balasubramanian,D.D.Dionysiou,M.T.Suidan,et al.Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water.Applied Catalysis B:Environmental,2004,47:73-84.
[16]J.Grzechulska,A.W.Morawski.Photocatalytic labyrinth flow reactor with immobilized P25 TiO2 bed for removal of phenol from water.Applied Catalysis B:Environmental,2003,46:415-419.
[17]B.O'Regan,M.Grätzel.A low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.Nature,1991,353:737-740.
[18]G.K.Mor,0.K.Varghese,M.Paulose,et al.A review on highly ordered,vertically oriented TiO2 nanotube arrays:Fabrication,material properties,and solar energy applications.Solar Energy Materials and Solar Cells,2006,90:2011-2075.
[19]A.Wold.Photocatalytic properties of TiO2.Chemistry of Materials,1993,5:280-283.
[20]U.Bach,D.Lupo,P.Comte,et al.Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies.Nature,1998,395:583-585.
[21]M.Durr,A.Schmid,M.Obermaier,et al.Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers.Nature Materials,2005,4:607-611.
[22]1.S.Cho,Z.Chen,A.J.Forman,et al.Branched TiO2 nanorods for photoelectrochemical hydrogen production.Nano Letters,2011,11:4978-4984.
[23]J.Li,W.Wan,F.Zhu,Q.Li,et al.Nanotube-based hierarchical titanate microspheres:an improved anode structure for Li-ion batteries.Chemical Communications,2012,48:389-391.
[24]M.Ye,J.Gong,Y.Lai,et al.High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays.Journal of the American Chemical Society,2012,134:15720-15723
[25]P.K.Santra,P.V.Kamat.Mn-doped quantum dot sensitized solar cells:a strategy to boost efficiency over 5%.Journal of the American Chemical Society,2012,134:2508-2511.
[26]H.-Q.Lian,J.-M.Wang,L Xu,et al.Oxidative energy storage behavior of a porous nanostructured TiO2-Ni(OH)2- bilayer photocatalysis system.Electrochimica Acta,2011,56:2074-2080.
[27]Z.Liu,X.Zhang,T.Murakami,et al.Sol-gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties.Solar Energy Materials and Solar Cells,2008,92:1434-1438.
[28]L.Sang,H.Tan,X.Zhang,et al.Effect of Quantum Dot Deposition on the Interfacial Flatband Potential, Depletion Layer in TiO2 Nanotube Electrodes,and Resulting H2 Generation Rates.The Journal of Physical Chemistry C,2012,116:18633-18640.
[29]A.A.Gribb,J.F.Banfield.Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2.American Mineralogist,1997,82:717-728.
[30]J.Wang,Z.Lin.Dye-sensitized TiO2 nanotube solar cells:rational structural and surface engineering on TiO2 nanotubes.Chemistry-An Asian Journal,2012,7:2754-2762.
[31]G.K.Mor,K.Shankar,M.Paulose,et al.Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells.Nano Letters,2006,6:215-218.
[32]M.Adachi,Y.Murata,I.Okada,et al.Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells.Journal of the Electrochemical Society,2003,150:488.
[33]G.K.Mor,K.Shankar,M.Paulose,et al.Enhanced Photocleavage of Water Using Titania Nanotube Arrays.Nano Letters,2005,5:191-195.
[34]S.-Z.Chu,S.Inoue,K.Wada,et al.Highly Porous(TiO2-SiO2-TeO2)/A12O3/TiO2 Composite Nanostructures on Glass with Enhanced Photocatalysis Fabricated by Anodization and Sol-Gel Process.The Journal of Physical Chemistry B,2003,107:6586-6589.
[35]O.K.Varghese,D.Gong,M.Paulose,et al.Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure.Advanced Materials,2003,15:624-627.
[36]M.Paulose,O.K.Varghese,G.K.Mor,et al.Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes.Nanotechnology,2006,17:398-402.
[37]D.Gong,C.A.Grimes,O.K.Varghese,et al.Titanium oxide nanotube arrays prepared by anodic oxidation.Journal of Materials Research,2001,16:3331-3334.
[38]Y.Ji,K.-C.Lin,H.Zheng,et al.Fabrication of double-walled TiO2 nanotubes with bamboo morphology via one-step alternating voltage anodization.Electrochemistry Communications,2011,13:1013-1015.
[39]T.Kasuga,M.Hiramatsu,A.Hoson,et al.Formation of Titanium Oxide Nanotube.Langmuir,1998,14: 3160-3163.
[40]Q.Chen,W.Zhou,G.H.Du,et al.Trititanate Nanotubes Made via a Single Alkali Treatment.Advanced Materials,2002,14:1208-1211.[41]S.Kobayashi,N.Hamasaki,M.Suzuki,et al.Preparation of helical transition-metal oxide using organogelators as structure-directing agents.Journal of the American Chemical Society,2002,124:6550-6551.
[42]A.Michailowski,D.Almawlawi,G.Cheng,et al.Highly regular anatase nanotubule arrays fabricated in porous anodic templates.Chemical Physics Letters,2001,349:1-5.
[43]D.Wang,Y.Liu,B.Yu,et al.TiO2 nanotubes with tunable morphology,diameter,and length:synthesis and photo-electrical/catalytic performance.Chemistry of Materials,2009,21:1198-1206.
[44]C.Lin,S.Chen,L.Cao.Anodic formation of aligned and bamboo-type TiO2 nanotubes at constant low voltages.Materials Science in Semiconductor Processing,2013,16:154-159.
[45]A.Mazzarolo,K.Lee,A.Vicenzo,et al.Anodic TiO2 nanotubes;Influence of top morphology on their photocatalytic performance.Electrochemistry Communications,2012,22:162-165.
[46]G.K.Mor,K.Shankar,M.Paulose,et al.Enhanced photocleavage of water using titania nanotube arrays.Nano Letters,2005,5:191-195.
[47]V.Zwilling,M.Aucoutuner,E.Darque-Ceretti.Anodic oxidation of titanium and TA6V alloy in chromic media.An electrochemical approach.Electrochimica Acta,1999,15:921-929.
[48]J.M.Macak,H.Tsuchiya,L.Taveira,et al.Smooth anodic TiO2 nanotubes.Angewandte Chemie International Edition,2005,44:7463-7465.
[49]Q.Cai,M.Paulose,O.K.Varghese,et al.The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation.Journal of Materials Research,2011,20:230-236.
[50]M.Paulose,K.Shankar,S.Yoriya,et al.Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 µm in Length.The Journal of Physical Chemistry B,2006,110:16179-16184.
[51]K.Shankar,G.K.Mor,H.E.Prakasam,et al.Highly-ordered TiO2 nanotube arrays up to 220 μm in length:use in water photoelectrolysis and dye-sensitized solar cells.Nanotechnology,2007,18:1-11.
[52]S.P.Albu,A.Ghicov,J.M.Macak,et al.250 μm long anodic TiO2 nanotubes with hexagonal self-ordering.Physica Status Solidi(RRL),2007,1:R65-R67.
[53]H.E.Prakasam,K.Shankar,M.Paulose,et al.A New Benchmark for TiO2 Nanotube Array Growth by Anodization.The Journal of Physical Chemistry C,2007,111:7235-7241.
[54]M.Paulose,H.E.Prakasam,O.K.Varghese,et al.TiO2 Nanotube Arrays of 1000 µm Length by Anodization of Titanium Foil:Phenol Red Diffusion.The Journal of Physical Chemistry C,2007,111:14992-14997.
[55]M.Paulose,K.Shankar,O.K.Varghese,et al.Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells.Journal of Physics D:Applied Physics,2006,39:2498-2503.
[56]J.M.Macák,H.Tsuchiya,A.Ghicov,et at.Dye-sensitized anodic TiO2 nanotubes.Electrochemistry Communications,2005,7:1133-1137.
[57]X.Ma,Y.Shen,G.Wu,et al.Sonication-assisted sequential chemical bath deposition of CdS nanoparticles into TiO2 nanotube arrays for application in solar cells.Journal of Alloys and Compounds,2012,538:61-65.
[58]Y.Xie.Photoelectrochemical application of nanotuhular titania photoanode.Electrochimica Acta,2006,51:3399-3406.
[59]X.Quan,S.Yang,X.Ruan,et al.Preparation of Titania Nanotubes and Their Environmental Applications as Electrode.Environmental Science & Technology,2005,39:3770-3775.
[60]J.H.Park,S.Kim,A.J.Bard.Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting.Nano Letters,2006,6:24-28.
[61]O.K.Varghese,D.Gong,M.Paulose,et al.Hydrogen sensing using titania nanotubes.Sensors and Actuators B:Chemical,2003,93:338-344.
[62]G.K.Mora,M.A.Carvalho,O.K.Varghese,et al.A room temperature TiO2 nanotube hydrogen sensor able to self-clean photoactively from environmental contamination.Journal of Materials Research,2004,19:628-634.
[63]K.S.Raja,M.Misra,K.Paramguru.Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium.Electrochimica Acta,2005,51:154-165.
[64]J.R.Jennings,A.Ghicov,L.M.Peter,et al.Dye-Sensitized Solar Cells Based on Oriented TiO2 Nanotube Arrays:Transport,Trapping,and Transfer of Electrons.Journal of the American Chemical Society,2008,130:13364-13372.
[65]D.Fang,K.Huang,S.Liu,et al.High density copper nanowire arrays deposition inside ordered Titania pores by electrodeposition.Electrochemistry Communications,2009,11:901-904.
[66]J.Lee,K.S.Hong,K.Shin,et al.Fabrication of dye-sensitized solar cells using ordered and vertically oriented TiO2 nanotube arrays with open and closed ends.Journal of Industrial and Engineering Chemistry,2012,18:19-23.
[67]C.-J.Lin,W.-Y.Yu,Y.-T.Lu,et al.Fabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications.Chemical Communications,2008,45:6031-6033.
[68]G.Liu,K.Wang,N.Hoivik,et al.Progress on free-standing and flow-through TiO2 nanotube membranes.Solar Energy Materials and Solar Cells,2012,98:24-38.