压电智能结构的模态传感和主动抗干扰振动控制
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

1.5 本书的特点和章节安排

鉴于振动主动控制在各个领域中有着广泛的应用前景及巨大的经济效益,在国家自然科学基金(61773335、51405428、11464031和50075036),江苏省自然科学基金(BK20171289和 BK20140490),中国博士后基金(514M560447),扬州市优秀青年基金(YZ2017099),江苏省六大人才高峰项目,江苏省高校优势学科建设工程项目(PAPD),扬州大学“十三五”重点项目和扬州大学高端人才(青年拔尖人才),复杂工程系统测量与控制教育部重点实验室开放课题(MCCSE 2016 A01、MCCSE 2015 A01)等项目资助下,以航空航天领域、汽车、船舶、农业机械和大型精密仪器保护罩等工业领域中,大量使用的轻质结构的主动控制为应用背景,将复杂加筋结构的多模态振动问题作为研究对象,采用压电材料制成的压电驱动器和压电传感器对结构的振动进行主动控制研究。围绕加筋壁板结构振动控制中存在的机电耦合模型难以精确建立、外界环境存在的不确定多重干扰激励、模型误差和传感器/驱动器异位配置等不确定因素,以及多模态耦合、溢出等问题展开研究。

针对传统主动振动控制方法在处理结构干扰影响方面的局限性,考虑传统前馈控制方法的先天优势——能对干扰进行快速主动抑制以及它的不足——不适用于干扰不可测或干扰模型无法建立的情况,本书提出以补偿或抵消干扰为目的的主动抗干扰振动控制方法。概括地讲,基于主动抗干扰技术的振动控制是指根据引起结构振动的干扰量测值或估计值,然后在控制设计中对其进行直接补偿或抵消;另外,主动抗干扰技术不必改变正在应用或已经应用多年的振动控制设计部分,不必设计全新的控制策略,从而省去了新型振动控制系统的方案论证环节。而且主动抗干扰控制不是基于“最坏情况”设计的,具有保守性小、标称性能优等特性。同时,探索干扰估计技术对发扬前馈控制优越的抗干扰性能及弥补传统前馈控制的应用局限性有着重要意义。针对目前反馈方法中无法直接对引起结构的干扰激励进行处理的缺点,以及传统的前馈方法中对于模型未知或者干扰激励不可量测情况的无能为力等不足,提出一系列基于引起结构振动的激励干扰的主动抗干扰复合控制新方法,进一步发扬前馈控制在振动控制的优越性,从方法优化和应用两个方面展开研究,其结构框图如图1.10所示。

图1.10 各章结构安排和关系图

第1章为绪论。首先,介绍了智能结构的组成和研究意义;其次,主要综述了智能结构在工业领域的振动控制的研究现状;再次,重点分析了结构振动及不确定性在实际工程系统中普遍存在的现象,并指出压电智能结构的构成以及振动控制的研究意义;分析了压电智能结构的被动、半主动、半被动和主动等控制方法的优缺点并综述了各种振动控制方法的研究现状;紧接着,分析了引起结构振动的干扰来源,并分析了传统前馈控制方法在振动控制领域的优缺点,提出引起结构振动的各种干扰估计技术的前馈补偿的振动复合振动控制,并阐述了基于干扰观测技术和自抗扰控制策略原理及其在振动控制中的研究意义和研究现状;综述了其他几类主动抗干扰理论的原理及其在振动控制中的应用情况;最后,介绍了本书的章节安排和各章节之间的关系,并给出了该书的写作目的和学术创新点。

第2章主要在阐述压电智能结构振动控制系统的主要构成的基础上,建立压电智能结构的机电耦合模型状态空间模型。首先,阐述压电元件的压电效应和压电方程的基本特性;其次,为了后面章节分析问题的方便,分别在使用压电片和加速度计作为传感器情况下,从结构的动力学方程出发分别基于模态分析法和有限元法建立整个系统的状态空间模型。

第3章主要阐述如何通过设计高分子压电薄膜的形状来直接测量振动结构的模态信息。首先,简要介绍高分子压电薄膜材料的组成机理和使用情况;其次,以悬臂梁为例,重点讨论通过不同方法(如模态方法、分步积分法和Adomian分解法)设计特定形状的PVDF压电薄膜,用于测量振动结构的模态信息;再次,针对结构声源控制系统,提出了几类体积位移传感器的设计方法,并开展了相应的优缺点分析;最后,通过Adomian分解法(ADM)设计了特定形状的模态传感器,为了验证一般边界条件下的ADM方法设计模态传感器,并在两种一般边界条件的结构开展了实验验证。

第4章讨论另一种阵列式压电模态传感器的设计方法。首先,在振动结构表面上布置一组相同形状的矩形PVDF薄膜阵列;然后设计这组PVDF阵列的加权系数,测量振动结构的模态信息(如结构模态、体积位移或声辐射模态);由于其具有当结构边界条件发生变化时,只须调整传感器的加权系数即可实现系统模态传感;在此基础上,可以很方便地推广应用于其他边界条件的复杂结构的振动测量。

第5章以板结构为研究对象,基于扰动观测器技术,并结合先进的振动控制策略进行了压电智能结构振动主动控制研究。阐明了干扰观测器的基本原理及参数选择机制;并对干扰观测器的性能开展稳定性分析;推出基于干扰观测技术的振动控制策略的设计过程,并在一个声激励空间结构系统开展振动控制的实验验证。

第6章开展压电智能结构的最优复合抗干扰振动控制设计。介绍了LQR最优振动控制器的原理及其参数优化理论;提出了一套基于混沌序列的LQR结构振动控制器的优化算法;在一套四面固支压电智能板结构系统中,对所提的最优抗干扰振动策略开展功能验证。

第7章针对传统DOB的振动控制策略在处理多模态振动、控制时延等方面的不足,提出了几类改进型的复合抗干扰振动控制策略。首先,给出了压电加筋结构在考虑多模态耦合、多模态输出叠加和传感器量测噪声等因素,建立了多模态机电耦合模型;并针对此模型设计了多通道的PID+DOB的多模态振动控制器,为了优化多通道PID控制性能,提出了混沌优化的多模态振动控制理论,并开展了相应的仿真和实验验证;为了消除系统控制时延和传感器量测噪声等问题,设计了一套二自由度的干扰观测振动控制理论,并给出了详细的控制器参数设计理论和功能验证。

第8章针对压电加筋壁板结构模型难以精确建立,且外界环境激励干扰的不确定性问题,提出了复杂压电智能结构的自抗扰振动控制方法。首先,阐明了非线性自抗扰振动控制器的设计原理及进行多模态振动控制的优势;其次,针对压电智能结构单模态的基本特点,设计了二阶线性自抗扰振动控制器,并开展状态估计性能和稳定性分析;最后针对四面固支的加筋结构开展多模态的振动控制实验,并开展结果分析。

第9章讨论提高自抗扰控制器的振动抑制性能的几类优化技术。首先,介绍提高自抗扰振动控制器的适应能力的研究意义;其次,为了降低ESO估计负担,充分利用系统模型信息,从而提高压电智能结构振动抑制的瞬态和稳态性能,提出了一种状态观测误差补偿的LADRC振动控制方案,并且针对各种干扰激励的情况进行实验验证;再次,针对加速度计、压电片等传感器和压电驱动器由于存在的异位配置等引起的时滞问题,采用Lissajous图形法估计出时延,基于SIMTH预估法,提出一类输出预估的自抗扰振动控制方法,并在四面固支的压电加筋板结构的多模态振动进行实验验证和结果分析;最后,充分利用工程中的加速度信息,给出了加速度阻尼提高理论,并结合二阶LADRC提出了一套加速度复合自抗扰的振动控制策略,并从理论和实验上分析这种自抗扰复合控制器的稳定性和优越性。

第10章对本书所提的方法进行了总结,比较了各类主动抗干扰振动控制理论的优越性和不足之处,并给出了主动抗干扰振动控制理论在工程应用的注意事项;最后指出下一步可能的研究方向。

本书针对复杂边界条件板结构的诸多不确定干扰,基于压电智能结构,利用动力学理论、模态传感理论和主动抗干扰控制理论及相关的技术,研究压电智能结构多模态振动的主动抗干扰控制和功能验证等问题,具体的学术创新点有:

(1)为了获取完整的状态方程,结合压电元件的本构方程和结构振动的基本理论,并考虑压电驱动器和传感器与基体结构的耦合作用,分别基于压电片和加速度计作为传感器的情况,结合有限元和模态分析法,建立系统多参数动态模型,进而建立压电智能结构的状态空间模型,并利用计算机仿真和实验测试结果进行对比,进行压电结构模型的验证和修改,获得系统精确的机电耦合模型。

(2)为了获得更加优良的传感信号,尤其是复杂压电多模态结构振动测量,不仅基于Adomian分解法和实验法设计了模态传感器,并且实现了阵列式压电模态传感器的实时自我诊断,并开展了相关的压电式模态传感器的实验验证;进一步开展了通过模态滤波技术结合压电阵列分析在结构损伤监测中的应用以及基于Adomian修正方法应用于不同结构振动问题上。

(3)针对振动主动控制系统中存在控制溢出、高次谐波响应和结构建模误差等内外干扰严重破坏系统的性能和稳定性的情况,提出了基于扰动观测器(DOB)的复合振动控制策略。首先,DOB估计内外干扰量通过前馈通道与反馈控制器的叠加来有效抑制干扰信号对受控结构产生的影响;其次,采用混沌优化策略对LQR的参数进行自动优化设计,提高LQR的振动抑制性能。采用四面固支板结构对所提的方法进行实验验证,实验结果表明,该方法能在保持系统稳定性的同时,显著地提高振动抑制性能。针对结构多模态振动主动控制中存在的输出叠加和输入耦合和传感器/驱动器同位配置的情况,进一步改进DOB的结构,提出一种基于改进的DOB的多模态复合振动控制策略,并进行了仿真和实验研究,结果表明了该方法同样能获得优越的振动抑制性能。

(4)针对加速度传感器和压电驱动器异位配置引起的相位时延现象,在基于改进DOB的复合振动控制器的基础上,研究了一类两自由度的复合振动控制方法,并进行了性能分析和稳定性分析。针对传感器测量结构位移和加速度等时存在的高频量测噪声的问题,通过额外引入一个高通滤波器来补偿反馈控制器通道,这样无论是低频的内外干扰,还是高频的量测噪声给系统带来的影响都能很好地消除。压电加筋板的振动控制实验证明了所提方法在抑制内外干扰、传感器量测噪声以及传感器/驱动器异位配置引起的时延等方面的有效性。

(5)针对结构多模态振动主动控制中存在的输出叠加和输入耦合的情况,设计一类不依赖结构数学模型的多模态线性自抗扰复合振动主动控制策略。首先,将其他模态的输出叠加和控制输入耦合看成广义干扰,针对每个独立模态设计线性扩张状态观测器(LESO)估计出这种广义干扰,再通过前馈补偿的方式抵消这种影响;然后针对每个独立模态设计线性PD控制器。几种激励情况下的实验结果表明,该方法不仅能够有效地抑制加筋板结构由于前两阶共振频率引起的振动,而且具有良好的抑制不确定因素引起的整个结构波动的能力。

(6)针对二阶自抗扰振动控制器在加筋壁板结构振动主动控制中存在的几个问题,本书还研究了几种自抗扰控制补偿技术。一种是针对当外界扰动激励变化时,扩张状态观测器(ESO)对扰动和各阶状态的估计存在偏差的问题,提出一种状态估计误差补偿的自抗扰振动控制方案,利用状态观测误差信息,对二阶自抗扰振动控制器进行补偿,减小ESO对扰动和各阶状态估计的压力。最后通过四种干扰激励的实验结果验证了该方法的有效性、实用性和强抗干扰能力。另一种是针对加筋板结构的多模态振动控制中的时延问题,在原有的二阶自抗扰振动控制器中引入输出预估器来补偿时延对结构振动性能的影响。实验结果表明该方法能够快速有效地抑制加筋壁板结构的多模态振动。一种是分析能使加速度反馈闭环系统稳定的条件,提出了一种加速度传感信号反馈和二阶线性自抗扰的复合振动主动控制策略,并从理论上分析了闭环结构的稳定性和优越性,并通过实验研究验证了所提方法不仅能够有效地抑制由于正弦激励和外界冲击引起的振荡,而且能更好地抑制不确定因素引起的整个结构的波动。