人工智能的难点是“黑盒子”问题
大数据的冲击力量现在看来还在加剧,其中有一个力量非常值得关注,那就是人工智能。
当人工智能遇到大数据的时候,现在井喷式的发展才变成了可能。其实人工智能是现在这个时代很多技术中的一类,它本身已经发展好几十年了,但是为什么在近些年才得到了快速发展?人工智能技术和这几个关键词有关,那就是“学习、训练、推理、演化、智能、智慧”,也就是说,它是关于这些关键词内容的一类技术。特别重要的一点,它要根据大量的数据来进行学习和预测,就是从数据中学习,建立模型,并用于预测未来。过去为什么不行呢?比如本来想学一个圆,但是过去的数据只有一个半圆,你说它怎么能很好地学出这个圆呢?所以,进入大数据时代,当我们的数据有足够的粒度和像素的时候它才成为可能,因为人工智能的主流技术首先是要基于大规模数据进行学习。其次,人工智能算法本身需要非常强的计算能力,也就是算力,只有在大数据时代,有了云计算平台、数据传输、数据的流通、数据的管理、诸如5G技术等,才能为进一步的大数据应用创造条件,为人工智能的发展提供非常好的环境和支撑。现在可以看到我们身边其实已经有很多人工智能产品了,比如工业机器人、财务机器人、作业机器人、下棋机器人、能作诗作画作曲的机器人等,这些机器人可以做很多我们过去认为不可能的事情。
人工智能在未来会波涛汹涌,一浪高过一浪地发展。但是它本身也有局限,目前的一些大数据技术特别是深度神经网络这样的技术,基本上属于“黑盒子”的技术,可以算得非常准,但是“为什么”还说不大清楚。在这种情况下,在一些重要的应用领域就受到局限,因为如果不知道“为什么”就不敢用这个方法做重要决策,如果不能通过非常清楚的机理来说明,实际它未来的应用也是有局限的。现在,业界和学界都在攻关“可解释人工智能”,实际就是人工智能在输入和输出之间,在数据和预测的结果之间,从数学上来讲需要一点定理,一些形式化的机理,从认识论上来讲需要一些因果关系。
现在这么热闹的人工智能,很多都是过去成果的工程化和产品化。它本身的理论突破,包括提到的可解释性,也是大家在未来关注的重点。
不管怎么说,人工智能的应用已经深刻地影响到我们了。作为人类,我们自己创造了一个“亚种”叫作机器人。机器人的行为是不是都在我们人的设想之中呢?会不会干一些我们想不到的事情呢?似乎这个担忧是必要的。所以机器行为学应运而生。当人知道和我们打交道的是机器人时,人到底会有什么不同?机器如果只是模拟人的行为,那么我们用不用担心它会做一些其他的事情?当人和机器人一起互动时,会不会有其他的一些问题出现?这些问题实际是很革命性的。传统社会学、管理学、经济学、心理学等都是研究人、由人构成的组织的行为、由人形成的网络的行为。随着各式各样的机器人越来越多地出现在我们身边,越来越多地替代人的工作,越来越多地挑战人们在智力、计算上的能力,这个担忧或者这样的研究是非常必要的。所以,我们要研究机器如何塑造人类的行为,人类如何塑造机器的行为,以及人机协作的行为。最新的《自然》杂志上有一篇文章也是呼唤学界、业界关注机器的行为以及机器和人的行为(12)。