3.2 非正弦信号采样误差分析
3.2.1 非正弦信号时域内功率测量误差分析
设电网电压、电流信号分别为
其中,Um、Im分别为第m(m=1,2,…,M)次谐波电压、电流信号的幅值;φm、ψm分别为相应的谐波电压、电流信号的初相位;ω为基波电压、电流信号的角频率,且ω=2πf=2π/T,f、T分别为基波电压、电流的频率和周期。
在一个基波周期T内分别对电压、电流波形均匀采样N点,实际工程应用中常以固定频率fs采样(采样周期Ts=1/fs),则T=NTs。假设被测信号的实际基波频率f′相对于理想基波频率f有Δf的偏差,即f′=f+Δf。设α=Δf/f,当α≠0时,NTs/f′为非整数,相应的采样序列为非整周期序列。被测电压、电流信号的交流采样序列可写为
用数字积分法计算非整周期采样一个周期T内的有功功率,即
如果仅考虑式所有同频谐波(含基波)电压、电流的乘积项,则有
式中,P0为整周期采样有功功率表达式;为同频率谐波电压、电流分量因非整周期采样引入的功率测量误差。
如果考虑上式中所有非同频谐波(含基波)电压、电流的乘积项,因非整周期采样也会产生功率测量误差,即
可见,P=P1+P2=P0+P0+P2,由于非整周期采样频率偏差的存在,已经不满足三角函数的正交性:同频率谐波电压、电流分量因非整周期采样引入功率测量误差;非同频谐波(含基波)电压、电流分量因非整周期采样引入功率测量误差P2。
当α=0时,、P2均为0,非整周期采样变为整周期采样,整周期采样时,总有功功率为
即整周期采样时,总有功功率等于各次谐波有功功率之和,这是传统有功功率的计算公式;非整周期采样时,有功功率的相对误差为
3.2.2 非正弦信号频域内功率测量误差分析
对非整周期采样序列进行N点的离散傅里叶正变换和反变换,有正变换:
其中,(k=0,1,2,…,N-1)
同理可得到
其中,(k=0,1,2,…,N-1)
反变换得
本文中u(n)、i(n)均为实数,所以有
推导DFT变换后频域内有功功率表达式为
式中,|U(k)|、|I(k)|分别为u(n)、i(n)的第k点离散傅里叶变换U(k)、I(k)对应的幅值;φ(k)为U(k)所对应的相位值;ψ(k)为I(k)所对应的相位值。
在非整周期采样时,由于频谱泄漏,|U(k)|、|I(k)|不是第k次电压、电流谐波的准确幅值,产生了泄漏误差,含有频谱泄漏误差的有功功率表达
式为
在整周期采样且当k>M或k=0时,U(k)、I(k)均为0,也为0 (由于满足满足奈奎斯特定律,),|U(k)|、|I(k)|分别是第k次电压、电流谐波的准确幅值,cos[φ(k)-ψ(k)]是第k次电压、电流谐波的功率因数,可以用上式准确计算第k次谐波的有功功率。也可以用下式计算基波和各次谐波的总有功功率:
3.2.3 仿真实例
为了验证以上分析的正确性,利用MATLAB软件进行仿真。电压信号和电流信号参数见表3.2,其中,基波频率f=50Hz,采样频率fs=4500Hz,采样点数N=90。求P0、、P2、P3和e。仿真结果见表3.3。
表3.2 谐波信号参数
从表3.3可以看出,,同频率谐波电压电流分量和非同频谐波(含基波)电压、电流分量因非整周期采样引入功率测量;P3=P,验证了有功功率计算公式的时域、频域的统一。当频率偏差Δf沿基频正方向增大时(α也增大),相对误差e增大;当Δf沿基频负方向减小时(α也减小),相对误差e增大。
表3.3 仿真结果比较
(续)