风险灾害危机研究(第十辑)
上QQ阅读APP看书,第一时间看更新

六 结论与展望

级联灾害作为一种在全球化背景下日益增多的新型风险,其概念和特征以及发生-发展机理等方面的研究,对级联灾害治理有着重要作用。本文在现有研究的基础上给出级联灾害的定义,认为级联灾害是致灾因子在社会系统中经过非线性增强而升级成的事故性灾难。然后,对2008年中国南方雪灾、2010年冰岛艾雅法拉火山爆发、2011年东日本“3·11”大地震以及2012年美国飓风“桑迪”四大案例进行单案例深度剖析和多案例对比研究。发现导致级联灾害中致灾因子升级的三种典型路径:主动失败、制度固化和权力分配。得出级联灾害往往是高度情景依赖的,致灾因子和社会脆弱性的耦合是导致级联灾害升级根源的结论,并总结出级联灾害具备的四个特征:连锁性、联动性、放大性和意外性。本文对级联灾害的概念和特征、发生-发展机理,尤其是灾害升级点的研究结论,可以帮助应急管理者超越将级联灾害看作多米诺骨牌效应的观点,掌握灾害升级演化的根源,从而能够制定更加有效的灾害预防措施,最大限度地减少灾害影响。

级联灾害的决定性特征是放大性,即具有跨越地理边界和政策边界的潜力[92]。这种危机很容易演变成一场国际规模的灾难,影响多个行业和关键基础设施[93][94][95]。一个小事件可以在现代社会紧密联系的复杂系统中迅速传播,并在传播过程中得到放大升级,最终演变为巨灾。级联灾害很难在早期被发现,而且从危机中恢复的代价高昂。如何有效应对级联灾害也成为学者们关注的研究内容。一些学者抱有悲观态度,认为这样的事件根本无法管理[96]。这一学派倾向于提出各种各样的措施,例如从投资社会弹性[97]到全面退出现代化[98]。另一些人提倡使用一系列旨在预防、检测和管理紧急情况的技术和管理工具。这类技术工具通常包括现代通信和信息系统等硬件[99]。即使是最乐观的学者也同意,各国政府通常无法独自应对这些跨界紧急情况,国际合作与跨学科研究在应对级联灾害中尤其重要。因此,本文提出以跨学科的方式建立跨境危机管理网络,以成功地适应不断变化的灾害风险。

针对级联灾害的弹性构建策略应至少包含以下几个方面。第一,充分理解跨区域的多灾种灾害风险。应充分理解不同致灾因子之间的耦合关系,意识到致灾因子的影响不是孤立存在而是密切相关的。在同时面临多种致灾因子的区域,进行减灾规划时应充分权衡每种致灾因子减缓措施之间的平衡,避免顾此失彼。同时,应将多种致灾因子分析与灾害风险在人群中的社会空间分配结合起来考虑。第二,建立全球性灾害早期预警系统。早期预警系统分为技术系统和社会系统两个层面。在技术层面,大数据和人工智能技术的应用有望提供更为精确的灾害预警信息。相比较而言,现有文献对于聚焦社会过程的灾害早期预警系统的探讨非常有限。而早期预警系统绝不仅仅是技术层面的,其关键是要能够在灾害发生之前提升民众的灾害风险感知和意识,从根本上降低社会脆弱性。因此,早期灾害预警系统从本质上说是一种综合考虑技术要素和社会过程的灾害学习系统。第三,加强跨境灾害治理协作。级联灾害的升级放大往往会使原本局限在一个区域内的局部灾害演变为具有跨区域、跨国甚至全球性影响的巨灾。因此,原本地方化的灾害治理模式可能难以应付跨越边界的级联灾害。由于存在政治体制、经济发展水平和文化背景等方面的差异,不同国家和地区如何协同化解共同面对的灾害风险是一个巨大的挑战。国际危机管理体系的设计必须通过谈判来解决深层次的紧张关系[100]。而目前有关灾害跨境治理的研究与实践非常缺乏,迫切需要进一步开展国际合作研究与实践。第四,增加制度、政策的实施弹性。政府机构应对级联灾害的风险有充分准备,适时改进规章制度、应急预案和行业标准等,避免出现制度化风险造成灾害风险的放大升级。第五,自上而下与自下而上灾害治理模式的结合。根据级联灾害的特性,既需要强化中央政府的应灾宏观调控能力,又需要培育地方的灾害弹性能力,才能在最大程度上控制灾害的升级放大进程。

参考文献

[1]G.Pescaroli,I.Kelman. How critical infrastructure orients international relief in cascading disasters[J]. Journal of Contingencies and Crisis Management,2017,25(2):56-67.

[2]G.Pescaroli,D.Alexander. A definition of cascading disasters and cascading effects:Going beyond the â €œtoppling dominosâ €metaphor[J]. Planet@ risk,2015,2(3):58-67.

[3]K.H.Lee,D.V.Rosowsky. Fragility analysis of woodframe buildings considering combined snow and earthquake loading[J]. Structural Safety,2006,28(3):289-303.

[4]G.Zuccaro,F.Cacace,S.J.S.Spence,et al. Impact of explosive eruption scenarios at Vesuvius[J]. Journal of Volcanology and Geothermal Research,2008,178(3):416-453.

[5]W.Marzocchi,M.L.Mastellone,A.Di Ruocco,P.Novelli,E.Romeo,P.Gasparini. Principles of multi-risk assessment:interaction amongst natural and man-induced risks[R]. Luxembourg:Office for Official Publications of the European Communities,2009.

[6]J.Selva. Long-term multi-risk assessment:statistical treatment of interaction among risks[J]. Natural hazards,2013,67(2):701-722.

[7]J.Zscheischler,Seneviratne S.I.. Dependence of drivers affects risks associated with compound events[J]. Science Advances,2017,3(6):e1700263.

[8]UNEP. United Nations Environment Programme[EB/OL]. http://www.un.org/esa/dsd/agenda21/res_agenda21_07.shtml.2018-12-25.

[9]S.Menoni. Chains of damages and failures in a metropolitan environment:some observations on the Kobe earthquake in 1995[J]. Journal of Hazardous Materials,2001,86(1-3):101-119.

[10]T.Tarvainen,J.Jarva,S.Greiving. Spatial pattern of hazards and hazard interactions in Europe[J]. Special Paper-Geological Survey of Finland,2006,42:83.

[11]M.S.Kappes,M.Keiler,K.V.Elverfeldt,et al. Challenges of analyzing multi-hazard risk:a review[J]. Natural Hazards,2012,64(2):1925-1958.

[12]郭增建,秦保燕. 灾害物理学简论[J]. 灾害学,1987(2):25-33.

[13]史培军. 再论灾害研究的理论与实践[J]. 自然灾害学报,1996,11(4):6-17.

[14]倪晋仁,李秀霞,薛安,李英奎,韩鹏,李天宏,刘仁志. 泥沙灾害链及其在灾害过程规律研究中的应用[J]. 自然灾害学报,2004(5):1-9.

[15]门可佩,高建国. 重大灾害链及其防御[J]. 地球物理学进展,2008(1):270-275.

[16]余瀚,王静爱,柴玫,史培军. 灾害链灾情累积放大研究方法进展[J]. 地理科学进展,2014,33(11):1498-1511.

[17]哈斯,张继权,佟斯琴,李思佳. 灾害链研究进展与展望[J]. 灾害学,2016,31(2):131-138.

[18]肖盛燮. 灾变链式理论及应用[M]. 北京:科学出版社,2006.

[19]徐道一. 灾害链演变过程的似序参量[A]. 中国可持续发展研究会. 2008中国可持续发展论坛论文集(2)[C]. 中国可持续发展研究会:中国可持续发展研究会,2008:4.

[20]郭海湘,李亚楠,黎金玲,尹朋珍. 基于灾害多级联动模型的城市综合承灾能力研究[J]. 系统管理学报,2014,23(01):91-103+110.

[21]杨珺珺. 事件树分析法评估建筑物地震灾害风险[J]. 自然灾害学报,2008(04):147-151.

[22]史培军. 三论灾害研究的理论与实践[J]. 自然灾害学报,2002(03):1-9.

[23]李智. 基于复杂网络的灾害事件演化与控制模型研究[D]. 长沙:中南大学,2010.

[24]J.Douglas. Physical vulnerability modelling in natural hazard risk assessment[J]. Natural Hazards and Earth System Science,2007,7(2):283-288.

[25]门可佩. 重大地震灾害链的时空有序性及其预测研究[J]. 地球物理学进展,2007(02):645-651.

[26]张卫星,周洪建. 灾害链风险评估的概念模型——以汶川5·12特大地震为例[J]. 地理科学进展,2013,32(1):130-138.

[27]潘安定,唐晓春,刘会平. 广东沿海台风灾害链现象与防治途径的设想[J]. 广州大学学报(自然科学版),2002(3):55-61.

[28]陈香,陈静,王静爱. 福建台风灾害链分析——以2005年“龙王”台风为例[J]. 北京师范大学学报(自然科学版),2007(2):203-208.

[29]王然,连芳,余瀚,史培军,王静爱. 基于孕灾环境的全球台风灾害链分类与区域特征分析[J]. 地理研究,2016,35(5):836-850.

[30]W.Marzocchi,A.Garcia-Aristizabal,P.Gasparini,et al. Basic principles of multi-risk assessment:a case study in Italy[J]. Natural hazards,2012,62(2):551-573.

[31]L.Kleist,A.H.Thieken,P.Köhler,et al. Estimation of the regional stock of residential buildings as a basis for a comparative risk assessment in Germany[J]. Natural Hazards and Earth System Science,2006,6(4):541-552.

[32]L.J.Steinberg,H.Sengul,A.M.Cruz. Natech risk and management:an assessment of the state of the art[J]. Natural Hazards,2008,46(2):143-152.

[33]G.Antonioni,G.Spadoni,V.Cozzani. A methodology for the quantitative risk assessment of major accidents triggered by seismic events[J]. Journal of hazardous materials,2007,147(1-2):48-59.

[34]G.Antonioni,S.Bonvicini,G.Spadoni,et al.. Development of a framework for the risk assessment of Na-Tech accidental events[J]. Reliability Engineering & System Safety,2009,94(9):1442-1450.

[35]S.Girgin,E.Krausmann. Historical analysis of US onshore hazardous liquid pipeline accidents triggered by natural hazards[J]. Journal of Loss Prevention in the Process Industries,2016,40:578-590.

[36]A.M.Cruz,E.Krausmann. Vulnerability of the oil and gas sector to climate change and extreme weather events[J]. Climatic change,2013,121(1):41-53.

[37]M.Merz,M.Hiete,T.Comes,et al.. A composite indicator model to assess natural disaster risks in industry on a spatial level[J]. Journal of Risk Research,2013,16(9):1077-1099.

[38]E. Marzo,V.Busini,R.Rota. Definition of a short-cut methodology for assessing the vulnerability of a territory in natural-technological risk estimation[J]. Reliability Engineering & System Safety,2015,134:92-97.

[39]E.Krausmann,E.Renni,M.Campedel,et al.. Industrial accidents triggered by earthquakes,floods and lightning:lessons learned from a database analysis[J]. Natural Hazards,2011,59(1):285-300.

[40]G.Ancione,E.Salzano,G.Maschio,et al.. A GIS-based tool for the management of industrial accidents triggered by volcanic ash fallouts[J]. Journal of Risk Research,2016,19(2):212-232.

[41]P.S.Showalter,M.F.Myers. Natural disasters as the cause of technological emergencies:a review of the decade 1980-1989[C]. Colorado:University of Colorado,Natural Hazards Research and Applications Information Center,1992:134.

[42]A.D.Gheorghiu,Z.Török,A.Ozunu,et al.. Comparative analysis of technological and Natech risk for two petroleum product tanks located in seismic area[J]. Environmental Engineering and Management Journal,2014,13(8):1887-1892.

[43]A.M.Cruz,L.J.Steinberg,A.L.Vetere-Arellano. Emerging issues for natech disaster risk management in Europe[J]. Journal of Risk Research,2006,9(5):483-501.

[44]A.D.Gheorghiu,Z.Török,A.Ozunu,et al. Comparative analysis of technological and Natech risk for two petroleum product tanks located in seismic area[J]. Environmental Engineering and Management Journal,2014,13(8):1887-1892.

[45]于广涛,王二平,李永娟.复杂社会技术系统安全绩效评定的新进展[J].人类工效学,2004(2):32-34.

[46]A.T.de Almeida,C.A.V.Cavalcante,M.H.Alencar,et al.. Multicriteria and Multiobjective Models for Risk,Reliability and Maintenance Decision Analysis[M]. New York:Springer,2015:215-232.

[47]S.Greiving. Integrated risk assessment of multi-hazards:a new methodology[J]. Special Paper-Geological Survey of Finland,2006,42:75.

[48]F.Lestari,D.Pelupessy,Y.Jibiki,et al.. Analysis of Complexities in Natech Disaster Risk Reduction and Management:A Case Study of Cilegon,Indonesia[J]. Journal of Disaster Research,2018,13(7):1298-1308.

[49]D.Helbing. Globally networked risks and how to respond[J]. Nature,2013,497(7447):51.

[50]陈安. 应急管理的机理体系[J].安全,2007(6):10-12.

[51]陈安,陈宁,倪慧荟. 现代应急管理理论与方法[M]. 北京:北京科学出版社,2009:50-51.

[52]张海波.当前应急管理体系改革的关键议题——兼中美两国应急管理经验比较[J].甘肃行政学院学报,2009(1):55-59+105.

[53]吕丽莉,史培军.中美应对巨灾功能体系比较——以2008年南方雨雪冰冻灾害与2005年卡特里娜飓风应对为例[J].灾害学,2014,29(3):206-213.

[54]张海波,童星. 巨灾救助的理论检视与政策适应——以“南方雪灾”和“汶川地震”为案例[J]. 社会科学,2012(3):58-67.

[55]张海波. 高风险社会中的自然灾害管理——以“2008年南方雪灾”为案例[J]. 北京行政学院学报,2010(3):38-42.

[56]郑江涛. 从火山灰“停航”事件看风险管理决策[J]. 中国应急管理,2010(5):56-57.

[57]B. Weinzierl,T. Sailer,D. Sauer,et al.. The Eyjafjalla eruption in 2010 and the volcanic impact on aviation[M]. Berlin:Springer,2012:625-644.

[58]A. Alemanno. The European regulatory response to the volcanic ash crisis between fragmentation and integration[J]. European journal of risk regulation,2010,1(2):101-106.

[59]D.Alexander. Volcanic ash in the atmosphere and risks for civil aviation:A study in European crisis management[J]. International Journal of Disaster Risk Science,2013,4(1):9-19.

[60]M.Mazzocchi,F.Hansstein,M.Ragona. The 2010 Volcanic Ash Cloud and Its Financial Impact on the European Airline Industry[C]. Cesifo Forum. Ifo Institute-Leibniz Institute for Economic Research at the University of Munich,2010.

[61]P.V.R.D.Carvalho. The use of Functional Resonance Analysis Method(FRAM)in a mid-air collision to understand some characteristics of the air traffic management system resilience[J]. Reliability Engineering & System Safety,2011,96(11):1482-1498.

[62]T.Plümper,A.Q.Flores,E.Neumayer. The double-edged sword of learning from disasters:Mortality in the Tohoku tsunami[J]. Global Environmental Change,2017,44:49-56.

[63]Y.W.Park,P.Hong,J.J.Roh. Supply chain lessons from the catastrophic natural disaster in Japan[J]. Business Horizons,2013,56(1):75-85.

[64]K.Rasmussen. Natural events and accidents with hazardous materials[J]. Journal of hazardous Materials,1995,40(1):43-54.

[65]E.Krausmann,A.M.Cruz,B.Affeltranger. The impact of the 12 May 2008 Wenchuan earthquake on industrial facilities[J]. Journal of Loss Prevention in the Process Industries,2010,23(2):242-248.

[66]顾朝林. 日本311特大地震地理学报告[J]. 地理学报,2011,66(06):853-861.

[67]Fukushima Prefectural Government. Steps for Revitalization in Fukushima,4 August 2016[EB/OL]. http://www.pref.fukushima.lg.jp/uploaded/attachment/233344.pdf. 2019-1-1.

[68]N. Adachi,V.Adamovitch,Y.Adjovi,et al.. Measurement and comparison of individual external doses of high-school students living in Japan,France,Poland and Belarus—the “D-shuttle” project—[J]. Journal of Radiological Protection,2016,36(1):49-66.

[69]G.Brumfiel,I.Fuyuno. Japan’s nuclear crisis:Fukushima’s legacy of fear[J]. Nature,2012,483(7388):138.

[70]S.Akiko,L.Yuliya. Diversity of Concerns in Recovery after a Nuclear Accident:A Perspective from Fukushima[J]. International Journal of Environmental Research and Public Health,2018,15(2):350.

[71]P.M.Figueroa. Risk communication surrounding the Fukushima nuclear disaster:an anthropological approach[J]. Asia Europe Journal,2013,11(1):53-64.

[72]Nature. Hurricane Sandy spins up climate discussion[EB/OL]. https://www.nature.com/news/hurricane-sandy-spins-up-climate-discussion-1.11706,2012-10-30/2019-1-20.

[73]T.Wahl,S.Jain,J.Bender,et al.. Increasing risk of compound flooding from storm surge and rainfall for major US cities[J]. Nature Climate Change,2015,5(12):1093.

[74]G.Pescaroli,I.Kelman. How critical infrastructure orients international relief in cascading disasters[J]. Journal of Contingencies and Crisis Management,2016,25(2):56-67.

[75]J.Zhao,D.Li,H.Sanhedrai,et al.. Spatio-temporal propagation of cascading overload failures in spatially embedded networks[J]. Nature Communications,2016,7:10094.

[76]乌尔里希·贝克著,何博文译. 风险社会[M]. 南京:译林出版社,2004.

[77]K.Hewitt. Interpretations of calamity:From the viewpoint of human ecology[M]. London:George Allen Unwin,1983.

[78]X.Lin,A.Moussawi,G.Korniss,et al.. Limits of risk predictability in a cascading alternating renewal process model[J]. Scientific Reports,2017,7(1):6699.

[79]史培军,吕丽莉,汪明,王静爱,陈文方. 灾害系统:灾害群、灾害链、灾害遭遇[J]. 自然灾害学报,2014,23(6):1-12.

[80]M.S.Kappes. Multi-Hazard risk analysises:A concept and its implementation[D]. Vienna:University of Vienna,2011.

[81]A.AghaKouchak,L.S.Huning,F.Chiang,et al. How do natural hazards cascade to cause disasters?[J]. Nature,2018,561(7724):458-460.

[82]C.Perrow. Organizing to reduce the vulnerabilities of complexity[J]. Journal of contingencies and crisis management,1999,7(3):150-155.

[83]乌尔里希·贝克著,吴英姿,孙淑敏译. 世界风险社会[M]. 南京:南京大学出版社,2004.

[84]E.L.Quarantelli,P.Lagadec,A.Boin. A heuristic approach to future disasters and crises:new,old,and in-between types[M]. New York:Springer,New York,2007:16-41.

[85]T.Wachtendorf. Trans-System Social Ruptures:Exploring Issues of Vulnerability and Resiliency 1[J]. Review of Policy Research,2009,26(4):379-393.

[86]C.Ansell,A.Boin,A.Keller. Managing transboundary crises:Identifying the building blocks of an effective response system[J]. Journal of Contingencies and Crisis Management,2010,18(4):195-207.

[87]C.Perrow. The next catastrophe:Reducing our vulnerabilities to natural,industrial,and terrorist disasters[M]. Princeton University Press,2011.

[88]A.B.Wildavsky. Searching for safety[M]. Transaction publishers,1988.

[89]N.Bharosa,B.V.Zanten,M.Janssen,et al.. Transforming crisis management:Field studies on the efforts to migrate from system-centric to network-centric operations[C]. Berlin:Springer,2009:65-75.

[90]B.Hutter. Anticipating risks and organising risk regulation[M]. Cambridge:Cambridge University Press,2010.

Understanding Cascading Disasters:Interpretative Framework and Resilience Building

Zhang Hui Jing Simeng

Abstract:The trend of increasing cascading disasters and consequent losses has become a truly global issue. The increasing vulnerability and the changing global risk landscape due to processes such as climate change,urbanization,and the increasing complexity of modern society poses major challenges for cascading disasters risk management. Based on comparative analysis on the Southern China freezing rain and snow storm disaster in 2008,the eruption of the Icelandic volcano Eyjafjallajokull in 2010,the Tohoku earthquake in 2011,and Hurricane Sandy in 2012,this study discusses the essential difference between cascade disasters and other disasters and give the definition and characteristics of cascade disasters. We argue that cascading disasters results from the hazards’ non-linear effect in social systems,which can cause catastrophic damage. In the background of increasing interaction and complexity of risk network,the causes of cascading disasters are not just the superposition of the hazards,but the coupling of social vulnerability and the hazards is often the escalation point that leads to the amplification of cascading disasters. There are three typical paths that lead to the escalation of hazards in cascading disasters:action errors,the ossification of social system,power allocation. The construction of cascading disasters’ resilience framework is suggested to begin with reducing social vulnerability and to establish a global cross-border network governance model with an interdisciplinary approach.

Keywords:Cascading Disasters;Social System;Disaster Escalation;Resilience Building


[1] 基金项目:国家社科项目“中国城市疫病灾害弹性构建研究”(项目编号:16CGL061)。

[2] 张惠,广州大学公共管理学院副教授,硕士生导师,研究方向为灾害治理与社区弹性;景思梦,广州大学大都市治理研究中心研究助理。

[3] G.Pescaroli,I.Kelman. How critical infrastructure orients international relief in cascading disasters[J]. Journal of Contingencies and Crisis Management,2017,25(2):56-67.

[4] G.Pescaroli,D.Alexander. A definition of cascading disasters and cascading effects:Going beyond the â €œtoppling dominosâ €metaphor[J]. Planet@ risk,2015,2(3):58-67.

[5] K.H.Lee,D.V.Rosowsky. Fragility analysis of woodframe buildings considering combined snow and earthquake loading[J]. Structural Safety,2006,28(3):289-303.

[6] G.Zuccaro,F.Cacace,S.J.S.Spence,et al. Impact of explosive eruption scenarios at Vesuvius[J]. Journal of Volcanology and Geothermal Research,2008,178(3):416-453.

[7] W.Marzocchi,M.L.Mastellone,A.Di Ruocco,P.Novelli,E.Romeo,P.Gasparini. Principles of multi-risk assessment:interaction amongst natural and man-induced risks[R]. Luxembourg:Office for Official Publications of the European Communities,2009.

[8] G.Pescaroli,D.Alexander. A definition of cascading disasters and cascading effects:Going beyond the â €œtoppling dominosâ €metaphor[J]. Planet@ risk,2015,2(3):58-67.

[9] J.Selva. Long-term multi-risk assessment:statistical treatment of interaction among risks[J]. Natural hazards,2013,67(2):701-722.

[10] J.Zscheischler,Seneviratne S.I.. Dependence of drivers affects risks associated with compound events[J]. Science Advances,2017,3(6):e1700263.

[11] UNEP. United Nations Environment Programme[EB/OL]. http://www.un.org/esa/dsd/agenda21/res_agenda21_07.shtml.2018-12-25.

[12] S.Menoni. Chains of damages and failures in a metropolitan environment:some observations on the Kobe earthquake in 1995[J]. Journal of Hazardous Materials,2001,86(1-3):101-119.

[13] T.Tarvainen,J.Jarva,S.Greiving. Spatial pattern of hazards and hazard interactions in Europe[J]. Special Paper-Geological Survey of Finland,2006,42:83.

[14] W.Marzocchi,M.L.Mastellone,A.Di Ruocco,P.Novelli,E.Romeo,P.Gasparini. Principles of multi-risk assessment:interaction amongst natural and man-induced risks[R]. Luxembourg:Office for Official Publications of the European Communities,2009.

[15] M.S.Kappes,M.Keiler,K.V.Elverfeldt,et al. Challenges of analyzing multi-hazard risk:a review[J]. Natural Hazards,2012,64(2):1925-1958.

[16] 郭增建,秦保燕. 灾害物理学简论[J]. 灾害学,1987(2):25-33.

[17] 史培军. 再论灾害研究的理论与实践[J]. 自然灾害学报,1996,11(4):6-17.

[18] 倪晋仁,李秀霞,薛安,李英奎,韩鹏,李天宏,刘仁志. 泥沙灾害链及其在灾害过程规律研究中的应用[J]. 自然灾害学报,2004(5):1-9.

[19] 门可佩,高建国. 重大灾害链及其防御[J]. 地球物理学进展,2008(1):270-275.

[20] 余瀚,王静爱,柴玫,史培军. 灾害链灾情累积放大研究方法进展[J]. 地理科学进展,2014,33(11):1498-1511.

[21] 哈斯,张继权,佟斯琴,李思佳. 灾害链研究进展与展望[J]. 灾害学,2016,31(2):131-138.

[22] 肖盛燮. 灾变链式理论及应用[M]. 北京:科学出版社,2006.

[23] 徐道一. 灾害链演变过程的似序参量[A]. 中国可持续发展研究会. 2008中国可持续发展论坛论文集(2)[C]. 中国可持续发展研究会:中国可持续发展研究会,2008:4.

[24] 郭海湘,李亚楠,黎金玲,尹朋珍. 基于灾害多级联动模型的城市综合承灾能力研究[J]. 系统管理学报,2014,23(01):91-103+110.

[25] 杨珺珺. 事件树分析法评估建筑物地震灾害风险[J]. 自然灾害学报,2008(04):147-151.

[26] 史培军. 三论灾害研究的理论与实践[J]. 自然灾害学报,2002(03):1-9.

[27] 李智. 基于复杂网络的灾害事件演化与控制模型研究[D]. 长沙:中南大学,2010.

[28] J.Douglas. Physical vulnerability modelling in natural hazard risk assessment[J]. Natural Hazards and Earth System Science,2007,7(2):283-288.

[29] 门可佩. 重大地震灾害链的时空有序性及其预测研究[J]. 地球物理学进展,2007(02):645-651.

[30] 张卫星,周洪建. 灾害链风险评估的概念模型——以汶川5·12特大地震为例[J]. 地理科学进展,2013,32(1):130-138.

[31] 潘安定,唐晓春,刘会平. 广东沿海台风灾害链现象与防治途径的设想[J]. 广州大学学报(自然科学版),2002(3):55-61.

[32] 陈香,陈静,王静爱. 福建台风灾害链分析——以2005年“龙王”台风为例[J]. 北京师范大学学报(自然科学版),2007(2):203-208.

[33] 王然,连芳,余瀚,史培军,王静爱. 基于孕灾环境的全球台风灾害链分类与区域特征分析[J]. 地理研究,2016,35(5):836-850.

[34] W.Marzocchi,A.Garcia-Aristizabal,P.Gasparini,et al. Basic principles of multi-risk assessment:a case study in Italy[J]. Natural hazards,2012,62(2):551-573.

[35] L.Kleist,A.H.Thieken,P.Köhler,et al. Estimation of the regional stock of residential buildings as a basis for a comparative risk assessment in Germany[J]. Natural Hazards and Earth System Science,2006,6(4):541-552.

[36] L.J.Steinberg,H.Sengul,A.M.Cruz. Natech risk and management:an assessment of the state of the art[J]. Natural Hazards,2008,46(2):143-152.

[37] G.Antonioni,G.Spadoni,V.Cozzani. A methodology for the quantitative risk assessment of major accidents triggered by seismic events[J]. Journal of hazardous materials,2007,147(1-2):48-59.

[38] G.Antonioni,S.Bonvicini,G.Spadoni,et al.. Development of a framework for the risk assessment of Na-Tech accidental events[J]. Reliability Engineering & System Safety,2009,94(9):1442-1450.

[39] S.Girgin,E.Krausmann. Historical analysis of US onshore hazardous liquid pipeline accidents triggered by natural hazards[J]. Journal of Loss Prevention in the Process Industries,2016,40:578-590.

[40] A.M.Cruz,E.Krausmann. Vulnerability of the oil and gas sector to climate change and extreme weather events[J]. Climatic change,2013,121(1):41-53.

[41] M.Merz,M.Hiete,T.Comes,et al.. A composite indicator model to assess natural disaster risks in industry on a spatial level[J]. Journal of Risk Research,2013,16(9):1077-1099.

[42] E. Marzo,V.Busini,R.Rota. Definition of a short-cut methodology for assessing the vulnerability of a territory in natural-technological risk estimation[J]. Reliability Engineering & System Safety,2015,134:92-97.

[43] E.Krausmann,E.Renni,M.Campedel,et al.. Industrial accidents triggered by earthquakes,floods and lightning:lessons learned from a database analysis[J]. Natural Hazards,2011,59(1):285-300.

[44] G.Ancione,E.Salzano,G.Maschio,et al.. A GIS-based tool for the management of industrial accidents triggered by volcanic ash fallouts[J]. Journal of Risk Research,2016,19(2):212-232.

[45] P.S.Showalter,M.F.Myers. Natural disasters as the cause of technological emergencies:a review of the decade 1980-1989[C]. Colorado:University of Colorado,Natural Hazards Research and Applications Information Center,1992:134.

[46] A.D.Gheorghiu,Z.Török,A.Ozunu,et al.. Comparative analysis of technological and Natech risk for two petroleum product tanks located in seismic area[J]. Environmental Engineering and Management Journal,2014,13(8):1887-1892.

[47] A.M.Cruz,L.J.Steinberg,A.L.Vetere-Arellano. Emerging issues for natech disaster risk management in Europe[J]. Journal of Risk Research,2006,9(5):483-501.

[48] A.D.Gheorghiu,Z.Török,A.Ozunu,et al. Comparative analysis of technological and Natech risk for two petroleum product tanks located in seismic area[J]. Environmental Engineering and Management Journal,2014,13(8):1887-1892.

[49] 于广涛,王二平,李永娟.复杂社会技术系统安全绩效评定的新进展[J].人类工效学,2004(2):32-34.

[50] A.D.Gheorghiu,Z.Török,A.Ozunu,et al. Comparative analysis of technological and Natech risk for two petroleum product tanks located in seismic area[J]. Environmental Engineering and Management Journal,2014,13(8):1887-1892.

[51] A.T.de Almeida,C.A.V.Cavalcante,M.H.Alencar,et al.. Multicriteria and Multiobjective Models for Risk,Reliability and Maintenance Decision Analysis[M]. New York:Springer,2015:215-232.

[52] S.Greiving. Integrated risk assessment of multi-hazards:a new methodology[J]. Special Paper-Geological Survey of Finland,2006,42:75.

[53] F.Lestari,D.Pelupessy,Y.Jibiki,et al.. Analysis of Complexities in Natech Disaster Risk Reduction and Management:A Case Study of Cilegon,Indonesia[J]. Journal of Disaster Research,2018,13(7):1298-1308.

[54] D.Helbing. Globally networked risks and how to respond[J]. Nature,2013,497(7447):51.

[55] 陈安. 应急管理的机理体系[J].安全,2007(6):10-12.

[56] 陈安,陈宁,倪慧荟. 现代应急管理理论与方法[M]. 北京:北京科学出版社,2009:50-51.

[57] 张海波.当前应急管理体系改革的关键议题——兼中美两国应急管理经验比较[J].甘肃行政学院学报,2009(1):55-59+105.

[58] 吕丽莉,史培军.中美应对巨灾功能体系比较——以2008年南方雨雪冰冻灾害与2005年卡特里娜飓风应对为例[J].灾害学,2014,29(3):206-213.

[59] 张海波,童星. 巨灾救助的理论检视与政策适应——以“南方雪灾”和“汶川地震”为案例[J]. 社会科学,2012(3):58-67.

[60] 张海波. 高风险社会中的自然灾害管理——以“2008年南方雪灾”为案例[J]. 北京行政学院学报,2010(3):38-42.

[61] 郑江涛. 从火山灰“停航”事件看风险管理决策[J]. 中国应急管理,2010(5):56-57.

[62] B. Weinzierl,T. Sailer,D. Sauer,et al.. The Eyjafjalla eruption in 2010 and the volcanic impact on aviation[M]. Berlin:Springer,2012:625-644.

[63] A. Alemanno. The European regulatory response to the volcanic ash crisis between fragmentation and integration[J]. European journal of risk regulation,2010,1(2):101-106.

[64] D.Alexander. Volcanic ash in the atmosphere and risks for civil aviation:A study in European crisis management[J]. International Journal of Disaster Risk Science,2013,4(1):9-19.

[65] M.Mazzocchi,F.Hansstein,M.Ragona. The 2010 Volcanic Ash Cloud and Its Financial Impact on the European Airline Industry[C]. Cesifo Forum. Ifo Institute-Leibniz Institute for Economic Research at the University of Munich,2010.

[66] P.V.R.D.Carvalho. The use of Functional Resonance Analysis Method(FRAM)in a mid-air collision to understand some characteristics of the air traffic management system resilience[J]. Reliability Engineering & System Safety,2011,96(11):1482-1498.

[67] M.Mazzocchi,F.Hansstein,M.Ragona. The 2010 Volcanic Ash Cloud and Its Financial Impact on the European Airline Industry[C]. Cesifo Forum. Ifo Institute-Leibniz Institute for Economic Research at the University of Munich,2010.

[68] T.Plümper,A.Q.Flores,E.Neumayer. The double-edged sword of learning from disasters:Mortality in the Tohoku tsunami[J]. Global Environmental Change,2017,44:49-56.

[69] Y.W.Park,P.Hong,J.J.Roh. Supply chain lessons from the catastrophic natural disaster in Japan[J]. Business Horizons,2013,56(1):75-85.

[70] K.Rasmussen. Natural events and accidents with hazardous materials[J]. Journal of hazardous Materials,1995,40(1):43-54.

[71] E.Krausmann,A.M.Cruz,B.Affeltranger. The impact of the 12 May 2008 Wenchuan earthquake on industrial facilities[J]. Journal of Loss Prevention in the Process Industries,2010,23(2):242-248.

[72] 顾朝林. 日本311特大地震地理学报告[J]. 地理学报,2011,66(06):853-861.

[73] Fukushima Prefectural Government. Steps for Revitalization in Fukushima,4 August 2016[EB/OL]. http://www.pref.fukushima.lg.jp/uploaded/attachment/233344.pdf. 2019-1-1.

[74] N. Adachi,V.Adamovitch,Y.Adjovi,et al.. Measurement and comparison of individual external doses of high-school students living in Japan,France,Poland and Belarus—the “D-shuttle” project—[J]. Journal of Radiological Protection,2016,36(1):49-66.

[75] G.Brumfiel,I.Fuyuno. Japan’s nuclear crisis:Fukushima’s legacy of fear[J]. Nature,2012,483(7388):138.

[76] S.Akiko,L.Yuliya. Diversity of Concerns in Recovery after a Nuclear Accident:A Perspective from Fukushima[J]. International Journal of Environmental Research and Public Health,2018,15(2):350.

[77] P.M.Figueroa. Risk communication surrounding the Fukushima nuclear disaster:an anthropological approach[J]. Asia Europe Journal,2013,11(1):53-64.

[78] Nature. Hurricane Sandy spins up climate discussion[EB/OL]. https://www.nature.com/news/hurricane-sandy-spins-up-climate-discussion-1.11706,2012-10-30/2019-1-20.

[79] T.Wahl,S.Jain,J.Bender,et al.. Increasing risk of compound flooding from storm surge and rainfall for major US cities[J]. Nature Climate Change,2015,5(12):1093.

[80] G.Pescaroli,I.Kelman. How critical infrastructure orients international relief in cascading disasters[J]. Journal of Contingencies and Crisis Management,2016,25(2):56-67.

[81] J.Zhao,D.Li,H.Sanhedrai,et al.. Spatio-temporal propagation of cascading overload failures in spatially embedded networks[J]. Nature Communications,2016,7:10094.

[82] 乌尔里希·贝克著,何博文译. 风险社会[M]. 南京:译林出版社,2004.

[83] D.Helbing. Globally networked risks and how to respond[J]. Nature,2013,497(7447):51.

[84] K.Hewitt. Interpretations of calamity:From the viewpoint of human ecology[M]. London:George Allen Unwin,1983.

[85] X.Lin,A.Moussawi,G.Korniss,et al.. Limits of risk predictability in a cascading alternating renewal process model[J]. Scientific Reports,2017,7(1):6699.

[86] 史培军,吕丽莉,汪明,王静爱,陈文方. 灾害系统:灾害群、灾害链、灾害遭遇[J]. 自然灾害学报,2014,23(6):1-12.

[87] M.S.Kappes. Multi-Hazard risk analysises:A concept and its implementation[D]. Vienna:University of Vienna,2011.

[88] G.Pescaroli,D.Alexander. A definition of cascading disasters and cascading effects:Going beyond the â €œtoppling dominosâ €metaphor[J]. Planet@ risk,2015,2(3):58-67.

[89] G.Pescaroli,D.Alexander. A definition of cascading disasters and cascading effects:Going beyond the â €œtoppling dominosâ €metaphor[J]. Planet@ risk,2015,2(3):58-67.

[90] A.AghaKouchak,L.S.Huning,F.Chiang,et al. How do natural hazards cascade to cause disasters?[J]. Nature,2018,561(7724):458-460.

[91] C.Perrow. Organizing to reduce the vulnerabilities of complexity[J]. Journal of contingencies and crisis management,1999,7(3):150-155.

[92] 乌尔里希·贝克著,吴英姿,孙淑敏译. 世界风险社会[M]. 南京:南京大学出版社,2004.

[93] E.L.Quarantelli,P.Lagadec,A.Boin. A heuristic approach to future disasters and crises:new,old,and in-between types[M]. New York:Springer,New York,2007:16-41.

[94] T.Wachtendorf. Trans-System Social Ruptures:Exploring Issues of Vulnerability and Resiliency 1[J]. Review of Policy Research,2009,26(4):379-393.

[95] C.Ansell,A.Boin,A.Keller. Managing transboundary crises:Identifying the building blocks of an effective response system[J]. Journal of Contingencies and Crisis Management,2010,18(4):195-207.

[96] C.Perrow. The next catastrophe:Reducing our vulnerabilities to natural,industrial,and terrorist disasters[M]. Princeton University Press,2011.

[97] A.B.Wildavsky. Searching for safety[M]. Transaction publishers,1988.

[98] C.Perrow. The next catastrophe:Reducing our vulnerabilities to natural,industrial,and terrorist disasters[M]. Princeton University Press,2011.

[99] N.Bharosa,B.V.Zanten,M.Janssen,et al.. Transforming crisis management:Field studies on the efforts to migrate from system-centric to network-centric operations[C]. Berlin:Springer,2009:65-75.

[100] B.Hutter. Anticipating risks and organising risk regulation[M]. Cambridge:Cambridge University Press,2010.