Preface
Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form - It needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications to deliver insights that are of tremendous value to their organizations.This course is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. We balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and numpy. Later you will learn the process of turning raw data into powerful insights. Through case studies and code examples using popular open-source Python libraries, this course illustrates the complete development process for analytic applications and how to quickly apply these methods to your own data to create robust and scalable prediction services. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates not only how these methods work, but how to implement them in practice. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring the insights of predictive modeling to life. Finally, you will see the best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world.
What this learning path covers
Module 1, Learning Predictive Analytics with Python, is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. It is the perfect balance of both statistical and mathematical concepts, and implementing them in Python using libraries such as pandas, scikit-learn, and numpy.
Module 2, Mastering Predictive Analytics with Python, will show you the process of turning raw data into powerful insights. Through case studies and code examples using popular open-source Python libraries, this course illustrates the complete development process for analytic applications and how to quickly apply these methods to your own data to create robust and scalable prediction services.
What you need for this learning path
Module 1:
In order to make the best use of this module, you will require the following:
- All the datasets that have been used to illustrate the concepts in various chapters. These datasets can be downloaded from this URL: https://goo.gl/zjS4C6. There is a sub-folder containing required datasets for each chapter.
- Your computer should have any of the Python distribution installed. The examples in the module have been worked upon in IPython Notebook. Following the examples will be much easier if you use IPython Notebook.This comes with Anaconda distribution that can be installed from https://www.continuum.io/downloads.
- The Python packages which are used widely, for example, pandas, matplotlib, scikit-learn, NumPy, and so on, should be installed. If you install Anaconda these packages will come pre-installed.
- One of the best ways to use this module will be to take the dataset used to illustrate concepts and flow along with the chapter. The concepts will be easier to understand if the reader works hands on the examples.
- A basic aptitude for mathematics is expected. It is beneficial to understand the mathematics behind the algorithms before applying them.
- Prior experience or knowledge of coding will be an added advantage. But, it is not a pre-requisite at all.
- Similarly, knowledge of statistics and some algorithms will be beneficial, but it is not a pre-requisite.
- An open mind curious to learn the tips and tricks of a subject that is going to be an indispensable skillset in the coming future.
Module 2:
You'll need latest Python version and PySpark version installed, along with the Jupyter notebook.
Who this learning path is for
This course is designed for business analysts, BI analysts, data scientists, or junior level data analysts who are ready to move from a conceptual understanding of advanced analytics to an expert in designing and building advanced analytics solutions using Python. If you are familiar with coding in Python (or some other programming/statistical/scripting language) but have never used or read about Predictive Analytics algorithms, this course will also help you.
Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this course—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail <feedback@packtpub.com>
, and mention the course's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.
Customer support
Now that you are the proud owner of a Packt course, we have a number of things to help you to get the most from your purchase.
Downloading the example code
You can download the example code files for this course from your account at http://www.packtpub.com. If you purchased this course elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.
You can download the code files by following these steps:
- Log in or register to our website using your e-mail address and password.
- Hover the mouse pointer on the SUPPORT tab at the top.
- Click on Code Downloads & Errata.
- Enter the name of the course in the Search box.
- Select the course for which you're looking to download the code files.
- Choose from the drop-down menu where you purchased this course from.
- Click on Code Download.
You can also download the code files by clicking on the Code Files button on the course's webpage at the Packt Publishing website. This page can be accessed by entering the course's name in the Search box. Please note that you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:
- WinRAR / 7-Zip for Windows
- Zipeg / iZip / UnRarX for Mac
- 7-Zip / PeaZip for Linux
The code bundle for the course is also hosted on GitHub at https://github.com/PacktPublishing/Python-Advanced-Predictive-Analytics. We also have other code bundles from our rich catalog of books, videos, and courses available at https://github.com/PacktPublishing/. Check them out!
Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our courses—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this course. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your course, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the course in the search field. The required information will appear under the Errata section.
Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com>
with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable content.
Questions
If you have a problem with any aspect of this course, you can contact us at <questions@packtpub.com>
, and we will do our best to address the problem.