上QQ阅读APP看书,第一时间看更新
Logistic regression with Spark
We progress with logistic regression with Spark as follows:
import org.apache.spark.ml.classification.LogisticRegression // Load training data val training = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") val lr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.3) .setElasticNetParam(0.8) // Fit the model val lrModel = lr.fit(training) // Print the coefficients and intercept for logistic regression println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}") // We can also use the multinomial family for binary classification val mlr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.3) .setElasticNetParam(0.8) .setFamily("multinomial") val mlrModel = mlr.fit(training) // Print the coefficients and intercepts for logistic regression with multinomial family println(s"Multinomial coefficients: ${mlrModel.coefficientMatrix}") println(s"Multinomial intercepts: ${mlrModel.interceptVector}")