Machine Learning Quick Reference
上QQ阅读APP看书,第一时间看更新

Least absolute shrinkage and selection operator 

The least absolute shrinkage and selection operator (LASSO) is also called L1. In this case, the preceding penalty parameter is replaced by |βj|:

By minimizing the preceding function, the coefficients are found and adjusted. In this scenario, as lambda becomes larger, λ → ∞, the penalty component rises, and so estimates start shrinking and become 0 (it doesn't happen in the case of ridge regression; rather, it would just be close to 0).