3
The Evolution of the Threat Landscape – Malware
I have always thought of malware as a synonym for "attackers' automation." Purveyors of malware seek to compromise systems for a range of motivations, as I described in Chapter 1, Ingredients for a Successful Cybersecurity Strategy. Any system that sends and receives email, surfs the web, or takes other forms of input can be attacked, regardless of whether it was manufactured in Redmond, Raleigh, Cupertino, Helsinki, or anywhere else. The AV-TEST Institute, one of the world's premier independent anti-virus testing labs, based in Germany, has one of the world's largest malware collections. (AV-Test Institute, 2020) They have accumulated this collection over 15 years. "Every day, the AV-TEST Institute registers over 350,000 new malicious programs (malware) and potentially unwanted applications (PUA)" (AV-Test Institute, 2020). The statistics that they have published indicate that the volume of total malware has increased every year between 2011 and 2019, starting that period with 65.26 million malware samples detected and ending it with 1.04032 billion (a 16x increase) (AV-Test Institute, 2020). According to the data that AV-Test has published in their annual security reports, the share of malware developed for Windows operating systems was 69.96% in 2016 (AV-Test Institute, 2017), 67.07% in 2017 (AV-Test Institute, 2018), and 51.08% in 2018 (AV-Test Institute, 2019).
The operating system with the next highest share of malware samples in these years was Google Android, with less than 7% of the share in every year reported (AV-Test Institute, 2020). The number of new malware samples detected for Linux operating systems was 41,161 in March of 2019 (the latest data available), while malware samples for Windows during the same time was 6,767,397 (a 198% difference) (AV-Test Institute, 2019). Malware samples for macOS during this month surged to 11,461 from 8,057 the month before (AV-Test Institute, 2019).
This data clearly suggests that the platform of choice for malware authors is the Windows operating system. That is, more unique malware is developed to attack Windows-based systems than any other platform. Once Windows systems are compromised, attackers will typically harvest software and game keys, financial information such as credit card numbers, and other confidential information they can use to steal identities, sometimes taking control of the system and its data for ransom. Many attackers will use compromised systems as platforms to perpetrate attacks from using the anonymity that the compromised systems provide to them.
Given that attackers have been targeting and leveraging Windows-based systems more than any other platform, and given the ubiquity of Windows, security experts need to understand how and where attackers have been using these systems. CISOs, aspiring CISOs, security teams, and cybersecurity experts can benefit from understanding how Windows-based systems are attacked, in at least a few ways:
- CISOs and security teams that are responsible for Windows systems in their environment should understand how attackers have been attacking Windows-based systems with malware, as well as how this has evolved over time:
- Being knowledgeable about malware will help security teams do their jobs better.
- This knowledge can be useful to help recognize the fear, uncertainty, and doubt that some security vendors use to sell their products and services; understanding how attackers have been using malware will help CISOs make better security-related investments and decisions.
- CISOs and security teams that are responsible for Linux-based systems, and other non-Microsoft operating systems, should have some insight into how their adversaries are compromising and using Windows systems to attack them. Attackers don't care if the tech they compromise was developed in Redmond, Raleigh, Cupertino, or China; we can take lessons from the Windows ecosystem, which also applies to Linux-based systems and other platforms and learn from them. Very often, the methods that malware authors use on the Windows platform will be adapted to attack other platforms, albeit usually on a smaller scale. Understanding malware authors' methods is important for security teams, regardless of the types of systems they protect. Unfortunately, CISOs don't get to tune out of Windows-based threats, even if they don't use Windows in their environments.
- Finally, in my opinion, it's hard for cybersecurity subject matter experts to use that moniker if they are blissfully unaware of malware trends in an online ecosystem consisting of over a billion systems that supports more than half of all the malware in the world. It doesn't matter if there are more mobile devices, more IoT devices, or more secure operating systems. It is undeniable that Windows is everywhere. Subsequently, all cybersecurity experts should know a little about the largest participant in the global threat landscape.
This chapter will provide a unique, detailed, data-driven perspective of how malware has evolved around the world over the past decade, and in some cases, I will provide data for longer periods. There are some very interesting differences in regional malware encounter rates and infection rates that I'll also dive into in this chapter. This view of the threat landscape will help CISOs and security teams understand how the malware threats they face have changed over time. Not only is this data super interesting, but it can help take some of the fear, uncertainty, and doubt out of conversations about malware and how to manage the risks it poses.
I'll also give you some pointers on how to spot good threat intelligence versus the nonsense I see so often in the industry today; after publishing thousands of pages of threat intelligence during my time at Microsoft, I have a few tips and tricks to share with you that I think you'll appreciate.
Throughout this chapter, we'll cover the following topics:
- Some of the sources of data that threat intelligence for Windows comes from
- Defining malware categories and how their prevalence is measured
- Global malware evolution and trends
- Regional malware trends for the Middle East, the European Union, Eastern Europe and Russia, Asia, as well as North and South America
- How to identify good threat intelligence
Before I introduce you to the data sources I used for this chapter, let's begin with an interesting and hopefully somewhat entertaining story.