基于加权多维标度的无线信号定位理论与方法
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

5.3 基于加权多维标度的定位方法2

5.3.1 标量积矩阵的构造

方法2中标量积矩阵的构造方式与方法1中有所不同。首先令

img

(5.96)

利用传感器和辐射源的位置向量定义如下复坐标矩阵[9]

img

(5.97)

式中

img

(5.98)

假设img为列满秩矩阵,即有img。然后构造如下标量积矩阵:

img

(5.99)

根据命题2.12可知,矩阵img可以表示为

img

(5.100)

式中

img

(5.101)

式(5.100)和式(5.101)提供了构造矩阵img的计算公式,相比于方法1中的标量积矩阵img,方法2中的标量积矩阵img的阶数增加了1维。现对矩阵img进行特征值分解,可得

img

(5.102)

式中,img,为特征向量构成的矩阵;imgimg,为特征值构成的对角矩阵,并且假设imgimg由于img,则有imgimg。若令imgimgimgimgimg,则可以将矩阵img表示为

img

(5.103)

再利用特征向量之间的正交性可得

img

(5.104)

【注记5.6】本章将矩阵img的列空间称为信号子空间(img也称为信号子空间矩阵),将矩阵img的列空间称为噪声子空间(img也称为噪声子空间矩阵)。

5.3.2 一个重要的关系式

下面将推导一个重要的关系式,它对于确定辐射源位置至关重要。首先将式(5.99)代入式(5.104)中可得

img

(5.105)

由式(5.105)可得

img

(5.106)

接着将式(5.97)代入式(5.106)中可得

img

(5.107)

然后将式(5.5)和式(5.98)代入式(5.107)中,并且同时消除等式两边的虚数单位img可得

img

(5.108)

式中

img

(5.109)

显然,向量img中包含了辐射源位置坐标,一旦得到了向量img的估计值,就可以对辐射源进行定位。式(5.108)是关于向量img的子空间等式,但其中仅包含噪声子空间矩阵img。根据式(5.103)可知,标量积矩阵img是由信号子空间矩阵img表示的,因此下面还需要获得向量img与矩阵img之间的关系式,具体可见如下命题。

【命题5.3】假设img是行满秩矩阵,则有

img

(5.110)

命题5.3的证明与命题5.1的证明类似,限于篇幅这里不再赘述。式(5.110)给出的关系式至关重要,但并不是最终的关系式。将式(5.110)两边左乘以img可得

img

(5.111)

式中,第2个等号处的运算利用了式(5.103)。式(5.111)即为最终确定的关系式,它建立了关于向量img的伪线性等式,其中一共包含img个等式,而TDOA观测量仅为img个,这意味着该关系式是存在冗余的。

5.3.3 定位原理与方法

下面将基于式(5.111)构建确定向量img的估计准则,并给出其求解方法,然后由此获得辐射源位置向量img的估计值。为了简化数学表述,首先定义如下矩阵和向量:

img

(5.112)

结合式(5.111)和式(5.112)可得

img

(5.113)

1.一阶误差扰动分析

在实际定位过程中,标量积矩阵img和矩阵img的真实值都是未知的,因为其中的真实距离差img仅能用其观测值img来代替,这必然会引入观测误差。不妨将含有观测误差的标量积矩阵img记为img,于是根据式(5.100)和式(5.101)可知,矩阵img可以表示为

img

(5.114)

不妨将含有观测误差的矩阵img记为img,则根据式(5.109)和式(5.112)中的第1式可知

img

(5.115)

式中

img

(5.116)

由于img,于是可以定义误差向量img,忽略误差二阶项可得

img

(5.117)

式中,imgimg分别表示imgimg中的误差矩阵,即有imgimgimg。下面需要推导它们的一阶表达式(即忽略观测误差img的二阶及其以上各阶项),并由此获得误差向量img关于观测误差img的线性函数。

首先根据式(5.114)可以将误差矩阵img近似表示为

img

(5.118)

利用式(5.118)可以将img近似表示为关于观测误差img的线性函数,如下式所示:

img

(5.119)

式中

img

(5.120)

其中

img

(5.121)

式(5.119)的推导见附录B.4。接着利用式(5.115)和矩阵扰动理论(见2.3节)可以将误差矩阵img近似表示为

img

(5.122)

式中

img

(5.123)

结合式(5.122)和式(5.123),可以将img近似表示为关于观测误差img的线性函数,如下式所示:

img

(5.124)

式中

img

(5.125)

其中

img

(5.126)

img

(5.127)

img

(5.128)

式中,img。式(5.124)的推导见附录B.5。

将式(5.119)和式(5.124)代入式(5.117)中可得

img

(5.129)

式中,img。由式(5.129)可知,误差向量img渐近服从零均值的高斯分布,并且其协方差矩阵为

img

(5.130)

2.定位优化模型及其求解方法

一般而言,矩阵img是列满秩的,即有img。由此可知,协方差矩阵img的秩也为img,但由于imgimg阶方阵,这意味着它是秩亏损矩阵,所以无法直接利用该矩阵的逆构建估计准则。下面利用矩阵奇异值分解重新构造误差向量,以使其协方差矩阵具备满秩性。

首先对矩阵img进行奇异值分解,如下式所示:

img

(5.131)

式中,img,为img阶正交矩阵;imgimg阶正交矩阵;imgimg阶对角矩阵,其中的对角元素为矩阵img的奇异值。为了得到协方差矩阵为满秩的误差向量,可以将矩阵img左乘以误差向量img,并结合式(5.117)和式(5.129)可得

img

(5.132)

由式(5.131)可得img,将该式代入式(5.132)中可知,误差向量img的协方差矩阵为

img

(5.133)

容易验证img为满秩矩阵,并且误差向量img的维数为img,其与TDOA观测量个数相等,此时可以将估计向量img的优化准则表示为

img

(5.134)

式中,img可以看作加权矩阵,其作用在于抑制观测误差img的影响。不妨将矩阵img分块表示为

img

(5.135)

于是可以将式(5.134)重新写为

img

(5.136)

再结合二次等式约束式(5.49)可以建立估计向量img的优化模型,如下式所示:

img

(5.137)

显然,式(5.137)的求解方法与式(5.51)的求解方法完全相同,因此5.2.3节中描述的求解方法可以直接应用于此,限于篇幅这里不再赘述。类似地,将向量img的估计值记为img,根据式(5.17)中的第2式可知,利用向量img中的前面3个分量就可以获得辐射源位置向量img的估计值img(即有img)。

【注记5.7】由式(5.130)、式(5.131)及式(5.133)可知,加权矩阵img与未知向量img有关。因此,严格来说,式(5.137)中的目标函数并不是关于向量img的二次函数,针对该问题,可以采用注记4.1中描述的方法进行处理。理论分析表明,在一阶误差分析理论框架下,加权矩阵img中的扰动误差并不会实质影响估计值img的统计性能[10]

图5.10给出了本章第2种加权多维标度定位方法的流程图。

img

图5.10 本章第2种加权多维标度定位方法的流程图

5.3.4 理论性能分析

下面将给出估计值img的理论性能。需要指出的是,5.2.4节中的性能推导方法可以直接搬移至此,所以这里仅直接给出最终结论。

首先可以获得估计值img的均方误差矩阵,如下式所示:

img

(5.138)

与估计值img类似,估计值img也具有渐近最优性,也就是其估计均方误差矩阵可以渐近逼近相应的克拉美罗界,具体可见如下命题。

【命题5.4】在一阶误差分析理论框架下,img

命题5.4的证明与命题5.2的证明类似,限于篇幅这里不再赘述。

5.3.5 仿真实验

假设利用6个传感器获得的TDOA信息(也即距离差信息)对辐射源进行定位,传感器三维位置坐标如表5.2所示,距离差观测误差向量img服从均值为零、协方差矩阵为img的高斯分布。

表5.2 传感器三维位置坐标 (单位:m)

img

首先将辐射源位置向量设为img (m),将标准差设为img,图5.11给出了定位结果散布图与定位误差椭圆曲线;图5.12给出了定位结果散布图与误差概率圆环曲线。

然后将辐射源坐标设为两种情形:第1种是近场源,其位置向量为imgimg(m);第2种是远场源,其位置向量为imgimg(m)。改变标准差img的数值,图5.13给出了辐射源位置估计均方根误差随着标准差img的变化曲线;图5.14给出了辐射源定位成功概率随着标准差img的变化曲线(图中的理论值是根据式(3.29)和式(3.36)计算得出的,其中imgm)。

img

图5.11 定位结果散布图与定位误差椭圆曲线

img

图5.12 定位结果散布图与误差概率圆环曲线

img

图5.13 辐射源位置估计均方根误差随着标准差σt的变化曲线

img

图5.14 辐射源定位成功概率随着标准差σt的变化曲线

接着将标准差img设为两种情形:第1种是img;第2种是img,将辐射源位置向量设为img(m)。改变参数img的数值,图5.15给出了辐射源位置估计均方根误差随着参数img的变化曲线;图5.16给出了辐射源定位成功概率随着参数img的变化曲线(图中的理论值是根据式(3.29)和式(3.36)计算得出的,其中imgm)。

img

图5.15 辐射源位置估计均方根误差随着参数k的变化曲线

img

图5.16 辐射源定位成功概率随着参数k的变化曲线

从图5.13~图5.16中可以看出:(1)基于加权多维标度的定位方法2的辐射源位置估计均方根误差同样可以达到克拉美罗界(见图5.13和图5.15),这验证了5.3.4节理论性能分析的有效性;(2)随着辐射源与传感器距离的增加,其定位精度会逐渐降低(见图5.15和图5.16),其对近场源的定位精度要高于对远场源的定位精度(见图5.13和图5.14);(3)两类定位成功概率的理论值和仿真值相互吻合,并且在相同条件下第2类定位成功概率高于第1类定位成功概率(见图5.14和图5.16),这验证了3.2节理论性能分析的有效性。

下面回到优化模型式(5.137)中,若不利用向量img所满足的二次等式约束式(5.49),则其最优解具有闭式表达式,如下式所示:

img

(5.139)

仿照4.3.4节中的理论性能分析可知,该估计值是渐近无偏估计值,并且其均方误差矩阵为

img

(5.140)

需要指出的是,若不利用向量img所满足的二次等式约束,则可能会影响最终的定位精度。下面不妨比较“未利用二次等式约束(由式(5.139)给出的结果)”和“利用二次等式约束(由图5.10中的方法给出的结果)”这两种处理方式的定位精度。仿真参数基本同图5.15和图5.16,只是固定标准差img,改变参数img的数值,图5.17给出了辐射源位置估计均方根误差随着参数img的变化曲线;图5.18给出了辐射源定位成功概率随着参数img的变化曲线(图中的理论值是根据式(3.29)和式(3.36)计算得出的,其中imgm)。

img

图5.17 辐射源位置估计均方根误差随着参数k的变化曲线

img

图5.18 辐射源定位成功概率随着参数k的变化曲线

从图5.17和图5.18中可以看出,若未利用向量img所满足的二次等式约束,则最终的定位误差确实会有所增加。


[1]若信号传播速度已知,则距离差与到达时间差是可以相互转化的。

[2]这里使用下角标“tdoa”来表征所采用的定位观测量。

[3]本节中的数学符号大多使用上角标“(1)”,这是为了突出其对应于第1种定位方法。

[4]也不会实质影响估计值img的统计性能。

[5]由式(5.17)中的第2式可知,向量img中的第4个分量一定是负数。

[6]这里使用下角标“tdoa”来表征此克拉美罗界是基于TDOA观测量推导出来的。

[7]img

[8]参数k越大,辐射源与传感器之间的距离越远。

[9]本节中的数学符号大多使用上角标“(2)”,这是为了突出其是对应于第2种定位方法。

[10]加权矩阵img中的扰动误差也不会实质影响估计值img的统计性能。