3.2 OLED的结构
OLED效率和寿命与器件结构密切相关,目前广泛使用的结构属于“三明治夹层”结构,即发光层被阴极和阳极像三明治一样夹在中间(一侧为透明电极以便获得面发光效果)的结构。由于OLED制膜温度低,所以一般多使用氧化铟氧化锡玻璃电极(Indium Tin Oxide,ITO)作为阳极。在ITO电极上用真空蒸镀法或旋涂法制备单层或多层有机半导体薄膜,最后将金属阴极制备于有机薄膜之上。根据有机半导体薄膜的功能,器件结构大致可以分为以下几大类。
3.2.1 单层器件结构
在器件的ITO阳极和金属阴极之间,制备一层有机半导体薄膜作为发光层,这就是最简单的单层OLED,其器件结构如图3-6所示,它仅由阳极、发光层和阴极组成,结构非常简单,制备方便。这种结构在聚合物有机电致发光器件中较为常用。
图3-6 单层OLED的器件结构
3.2.2 双层器件结构
由于大多数有机电致发光器件的材料是单极性的,同时具有相同的空穴和电子传输特性的双极性(Bipolar)有机半导体材料很少,因此只能单一地传输电子或空穴中的一种。如果利用这种单极性的有机材料作为单层器件的发光材料,则会出现电子和空穴注入与传输的不平衡,且易使发光区域靠近迁移率较小的载流子注入一侧的电极,若为金属电极,则很容易导致发光猝灭,而这种猝灭会降低激子利用率,从而导致器件发光效率的降低。
由于单层结构存在较难克服的缺点,目前OLED器件大多采用多层结构。这一里程碑式的工作于1987年由Kodak公司首先提出,该结构能有效达到调整电子和空穴的复合区域远离电极和平衡载流子注入速率的目的,在很大程度上提高了器件的发光效率,使OLED的研发进入到一个崭新的阶段。这种结构的主要特点是发光层材料具有电子(空穴)传输性,需要加入一层空穴(电子)传输材料以调节空穴和电子注入发光层的速率和数量,这层空穴(电子)传输材料还起着阻挡电子(空穴)层的作用,使注入的电子和空穴的复合发生在发光层附近。双层OLED器件如图3-7所示。
图3-7 双层OLED器件
3.2.3 三层及多层器件结构
由电子传输层(Electron Transport Layer,ETL)、空穴传输层(Hole Transport Layer,HTL)和发光层组成的三层OLED器件,如图3-8所示。结构是由日本的Adachi课题组首次提出的。这种器件结构的优点是使三个功能层各司其职,对于选择功能材料和优化器件结构性能都十分方便,是目前OLED中常采用的器件结构。
图3-8 三层OLED器件
在实际OLED器件结构设计时,为了使OLED器件各项性能最优,并且充分发挥各个功能层的作用,进一步提高OLED的发光亮度和发光效率,人们在三层结构基础上采用多层器件结构,对过量载流子进行限制、调配。这是目前OLED最常用的器件结构。这种器件结构不但保证了有机电致发光器件的功能层与基板(衬底)之间具有良好的附着性,还使得来自阳极和金属阴极的载流子更容易注入有机半导体功能薄膜中。
为提高器件的性能,各种更复杂的器件结构不断出现。但由于大多数有机材料具有绝缘的特性,只有在很高的电场强度(约10 V/cm)下才能使载流子从一个分子传输到另一个分子,所以有机半导体薄膜的总厚度不能超过百纳米级,否则器件的驱动电压将会更高。
3.2.4 叠层串式器件结构
基于全彩色显示的需要,Forrest等人提出了将三基色器件沿厚度方向垂直堆叠,且保证每个器件都由各自的电极控制,这样就构成了彩色显示装置,如图3-9所示。用这种方法制成的显示器件可获得优于传统技术的分辨率,人们利用这种思想,将多个发光单元垂直堆叠,并在中间加一个电极连接层,同时只用两端电极进行驱动,即叠层串式结构器件(Tandem OLED)。这种结构能够极其有效地提高器件的电流效率,使器件能在较小的电流下达到非常高的亮度,这为实现高效率、长寿命的有机电致发光器件提供了一个便捷的途径。
图3-9 叠层OLED器件