上QQ阅读APP看书,第一时间看更新
如何阅读本书
本书分为4部分。
第一部分(第1~3章):搜索和推荐系统的基础。
这部分首先说明了概率统计与应用数学是现代机器学习理论的基础,也是基于统计的自然语言处理的基础;其次介绍了搜索系统和推荐系统的常识,为读者的后续学习打下基础;最后描述了知识图谱的相关基础理论,为其在搜索系统和推荐系统领域的应用作铺垫。
第二部分(第4~6章):搜索系统的基本原理。
这部分的主要内容包括搜索系统框架及原理、主要算法以及相关评价体系。首先,介绍搜索系统的架构和原理,使读者了解搜索系统的组成、工作原理以及知识图谱在搜索系统中应用的概况;其次,主要讲解搜索系统中涉及的基本模型、机器学习以及深度学习算法;最后,描述评价搜索系统的相关指标和方法。
第三部分(第7~9章):推荐系统的基本原理。
这部分的主要内容包括推荐系统框架及原理、主要算法以及推荐系统相关评价指标。首先,介绍推荐系统的架构和原理,使读者了解推荐系统的组成、工作原理以及知识图谱在推荐系统中应用的概况;其次,主要讲解推荐系统中涉及的线性模型、树模型以及深度学习模型;最后,对判断一个推荐系统的优劣给出相应的指标体系。
第四部分(第10~12章):应用。
这部分首先介绍了三种常见的搜索引擎工具——Lucene、Solr和Elasticsearch;其次讲述了搜索系统和推荐系统两个方向的应用;最后详细介绍了如何充分结合AI与工程在工业界发挥作用。
其中,第一部分相对独立。如果你是一名资深用户,能够理解搜索和推荐的相关基础知识,那么可以直接跳过这部分内容。但是如果你是一名初学者,请一定从第1章的基础理论知识开始学习。