2.3 搜索与推荐的区别
搜索和推荐都是用户解决信息过载的有效手段,能够帮助用户快速准确地定位到想要的信息。互联网上搜索和推荐这两种方式大量并存,它们之间到底有怎样的区别呢?
1)按照用户意图是否明确,我们可以将两者进行区分。搜索引擎是一种用户意图明确的信息检索方式,用户能够提供查询关键词,指引搜索引擎查询相关内容。这个过程是用户主动发起的。反之,当用户意图不够明确时,推荐系统就能够满足用户此时的需求。比如音乐播放器根据用户的喜好和历史行为给出用户推荐列表,电商平台根据购买、浏览等记录给出用户可能喜欢的商品列表,这些都是用户在意图不明确的时候被动接受的内容。也正是因为推荐系统不需要明确的搜索内容,所以能够满足用户难以用文字表述的需求。
2)两者个性化区别。当用户在输入想要检索的内容时,搜索引擎展示的结果基本固定,个性化程度较低。推荐系统的个性化程度较高,因为推荐并没有一个标准的答案。推荐系统可以根据每位用户的历史观看行为、评分记录等生成一个当下对用户最有价值的结果,这也是推荐系统独特的魅力。
3)评价标准不同。搜索质量的重要评价标准是能否帮用户快速找到准确的结果,因此搜索引擎的排序算法需要尽量把最好的结果放到前面。总而言之,“好”的搜索算法需要让用户获取信息的效率更高,停留时间更短。搜索引擎常用的评价指标有:归一化折损累计增益(nDCG)、精准度–召回率(Precision-Recall)等。而推荐系统则希望用户被所推荐的内容吸引,停留更长的时间,有更多的持续性动作。对用户兴趣挖掘的越深,推荐的成功率也就越高。推荐系统的评价面要更加宽泛,推荐结果的数量也更多,出现的位置、场景也更加复杂。对于Top N推荐,MAP或CTR是普遍的评价方法;对于评分预测问题,RMSE或MAE是常见量化方法。
4)马太效应和长尾理论。由于用户使用搜索引擎是为了快速找到结果,因此绝大部分用户的点击集中在排列较靠前的结果上,而排列靠后的结果以及翻页后的内容很少被关注。这就是著名的马太效应,即热门物品受到更多的关注,冷门物品则越被遗忘的现象。长尾理论是指冷门物品的种类远远高于热门物品的种类。在电商领域,如果这些长尾物品被充分挖掘,其带来的价值可能会超过热门物品所带来的价值。推荐系统能够发现被“遗忘”的非热门的物品,将长尾资源盘活和利用,引起用户的注意,挖掘用户的兴趣,提供给用户更多的选择。而且,依赖热门内容可能会导致潜在客户的流失。