上QQ阅读APP看书,第一时间看更新
参考文献
1.短暂性脑缺血发作中国专家共识组.短暂性脑缺血发作的中国专家共识更新版(2011年).中华内科杂志,2011,50(6):530-533.
2.李支援,张英,吕风亚,等.脑分水岭梗死MRI、MRA特点及其发病机制的研究.神经损伤与功能重建,2014,9(3):218-221.
3.周菲,郑家庆,沈志勇,等.磁敏感加权成像在出血性脑梗死诊断中的应用.中国CT和MR杂志,2016,12,37-40.
4.中华医学会神经病学分会脑血管病学组卒中诊治指南编写组.中国颅内静脉系统血栓形成诊断和治疗指南.中华神经科杂志,2012,45(11):818-823.
5.周立新,倪俊,朱以诚,等.脑静脉血栓的影像诊断.中国卒中杂志,2014,9:838-845.
6.中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组.中国脑小血管病诊治共识.中华神经科杂志,2015,48(10):838-844.
7.王忠诚.王忠诚神经外科学.湖北:湖北科学技术出版社,2005.
8.冀勇,丁璇,王志刚.脑动静脉畸形出血相关因素分析.中华医学杂志,2012,92(35):2488-2490.
9.黄延林,张俊卿,陈锷,等.脑AVM的治疗时机和方法的选择.中华神经外科杂志,2005,21(10):616-619.
10.王伟,李明昌,陈谦学.烟雾病的病因学及临床诊治研究进展.国际神经病学神经外科学杂志,2014,41(4):377-381.
11.王菁,刘斌,王万勤,等.脑静脉畸形64层CT血管成像的表现.临床放射学杂志,2010,29(2):155-158.
12.贺丹,黄勃源,陈德强,等.3.0T磁共振SWI对颅内静脉血管瘤的诊断价值.临床放射学杂志,2009,28(4):460-462.
13.鱼博浪,王斐,孙亲利,等.鞍旁海绵状血管瘤的CT和NRI诊断.临床放射学杂志,2007,26(2):117-119.
14.戴世鹏,庞军,戴景儒.高血压脑病的MRI表现及鉴别诊断.磁共振成像,2014,5(1):15-18.
15.陈国中,卢光明.颅内动脉瘤形成、发展及破裂的影响因素分析.临床放射学杂志,2015,34:656-659.
16.白人驹,张雪林.医学影像诊断学.3版.北京:人民卫生出版社,2010.
17.欧阳墉.数字减影血管造影诊断学.北京:人民卫生出版社,2001.
18.邓剑平,高国栋,赵振伟,等.外伤性颈内动脉海绵窦瘘的诊断及血管内栓塞治疗.实用放射学杂志,2006,22(2):226-228.
19.贾建平.神经病学.6版.北京:人民卫生出版社,2008,24-26.
20.张志勇,焦劲松,刘尊敬,等.颈动脉肌纤维发育不良致卒中的临床及影像特征.中华内科杂志,2015,54(9):793-795.
21.胡钰,赵值鸿,陈海.自发性脑动脉夹层致脑梗死临床及影像分析.脑与神经病杂志,2012,20:440-443.
22.程旭,高培毅.可逆性脑血管收缩综合征的临床及影像表现.中华放射学杂志,2016,50(12):978-980.
23.中国免疫学会神经免疫学分会.原发性中枢神经系统血管炎诊断和治疗中国专家共识.中国神经免疫学和神经病学杂志,2017,24(4):229-239.
24.Shono K,Satomi J,Tada Y,et al.Optimal Timing of Diffusion-Weighted Imaging to Avoid False-Negative Findings in Patients With Transient Ischemic Attack.Stroke,2017,48(7):1992.
25. Sehatzadeh S. Is Transient Ischemic Attack a Medical Emergency? An Evidence-Based Analysis. Health Technol Assess Ser, 2015, 15(3): 1-45.
26. Johnston SC, Rothwell PM, Nguyen-Huynh MN, et al. Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack. Lancet, 2007, 369(9558): 283-292.
27. Lee SH, Nah HW, Kim BJ, et al. Role of Perfusion-Weighted Imaging in a Diffusion-Weighted-Imaging-Negative Transient Ischemic Attack. J Clin Neurol, 2017, 13(2): 129-137.
28. Vidorreta M, Wang Z, Rodriguez I, et al. Comparison of 2D and 3D single-shot ASL perfusion fMRI sequences. NeuroImage, 2012, 66(1): 662-671.
29. Bivar OA, Stanwcll P, Levi C, et al. Arterial spin labeling identifies tissue salvage and good clinical recovery after acute ischemic stroke. J Neuroimaing, 2013, 23(3): 391-396.
30. Niibo T, Ohta H, Yonenaga K, et al. Arterial spin-labeled perfusion imaging to predict mismatch in acute ischemic stroke. Stroke, 2013, 44(9): 2601-2603.
31. Nael K, Meshksar A, Liebeskind DS, et al. Quantitative analysis of hypoperfusion in acute stroke arterial spin labeling versus dynamic suseeptibility contrast. Stroke, 2013, 44(11): 3090-3096.
32. Nah HW, Kwon SU, Kang DW, et al. Diagnostic and prognostic value of multimodal MRI in transient ischemic attack. Int J Stroke, 2014, 9(7): 895-901.
33. Pavlovic AM, Barras CD, Hand PJ, et al. Brain imaging in transient ischemic attack-redefining TIA. J Clin Neurosci, 2010, 17(9): 1105-1110.
34. Asdaghi N, Hill MD, Coulter JI, et al. Perfusion MR predicts outcome in high-risk transient ischemic attack/minor stroke: a derivation-validation study. Stroke, 2013, 44(9): 2486-2492.
35. Krishnamurthi RV, Feigin VL, Forouzanfar MH, et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health, 2013, 1(5): e259-e281.
36. Shou W, Min L, Tian L, et al. Hematoma volume measurement in gradient echo MRI using quantitative susceptibility mapping. Stroke, 2013, 44: 2315-2317.
37. Osborn AG. Diagnostic imaging. First Edition. Salt Lake City, Utach: Amrisys Inc, 2004.
38. Sorgun MH, Rzayev S, Yilmaz V, et al. Etiologic Sub-types of Watershed Infarcts. Stroke Cerebrovasc Dis, 2015, 24(11): 2478-2483.
39. Tan S, Wang D, Liu M, et al. Frequency and predictors of spontaneous hemorrhagic transformation in ischemic stroke and its association with prognosis. J Neurol, 2014, 261: 905-912.
40. Wang BG, Yang N, Lin M, et al. Analysis of Risk Factors of Hemorrhagic Transformation After Acute Ischemic Stroke: Cerebral Microbleeds Do Not Correlate with Hemorrhagic Transformation. Cell Biochem Biophys, 2014, 70: 135-142.
41. Hoffmann A, Bredno J, Wendland MF, et al. MRI bloodbrain barrier permeability measurements to predict hemorrhagic transformation in a rat model of ischemic stroke. Transl Stroke Res, 2012, 3: 508-516.
42. Lau AY, Wong EH, Wong A, et al. Significance of good collateral compensation in symptomatic intracranial atherosclerosis. Cerebrovasc Dis, 2012, 33: 517-524.
43. Romero JR, Pikula A, Nguyen TN, et al. Cerebral collateral circulation in carotid artery disease. Curent Cardiol Rev, 2009, 5: 279-288.
44. Liebeskind DS, Cotsonis GA, Saver JL, et al. Collaterals dramatically alter stroke risk in intracranial atherosclerosis. Ann Neurol, 2011, 69: 963-974.
45. Zaidat OO, Yoo AJ, Khatri P, et al. Recommendations on angiographic revascularization grading standards for acute ischemic stroke: a consensus statement. Stroke, 2013, 44: 2650-2663.
46. Hermier M, Ibrahim AS, Wiart M, et al. The delayed perfusion sign at MRI. J Neuroradiol, 2003, 30: 172-179.
47. Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med, 2015, 73: 102-116.
48. Wang L, Yu C, Chen H, et al. Dynamic functional reorganization of the motor execution network after stroke. Brain, 2010, 133(Pt 4): 1224-1238.
49. Liu J, Qin W, Zhang J, et al. Enhanced interhemispheric functional connectivity compensates for anatomical connection damages in subcortical stroke. Stroke, 2015, 46(4): 1045-1051.
50. Zhang J, Meng L, Qin W, et al. Structural damage and functional reorganization in ipsilesional m1 in wellrecovered patients with subcortical stroke. Stroke, 2014, 45(3): 788-793.
51. Yu C, Zhu C, Zhang Y, et al. A longitudinal diffusion tensor imaging study on Wallerian degeneration of corticospinal tract after motor pathway stroke. Neuroimage 2009, 47(2): 451-458.
52. Zhang ZG, Chopp M. Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol, 2009, 8(5): 491-500.
53. Kraemer M, Schormann T, Hagemann G, et al. Delayed shrinkage of the brain after ischemic stroke: preliminary observations with voxel-guided morphometry. J Neuroimaging, 2004, 14(3): 265-272.
54. Coutinho JM, Gerritsma JJ, Zuurbier SM, Stam J. Isolated cortical vein thrombosis: systematic review of case reports andcase series. Stroke, 2014, 45: 1836-1838.
55. Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol, 2013, 12(8): 822-838.
56. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol, 2013, 12(5): 483-497.
57. Lambert C, Benjamin P, Zeestraten E, et al. Longitudinal patterns of leukoaraiosis and brain atrophy in symptomatic small vessel disease. Brain, 2016, 139(4): 1136-1151.
58. Vlak MH, Algra A, Brandenburg R, et al. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol, 2011, 10: 626-636.
59. Müller TB, Sandvei MS, Kvistad KA, et al. Unruptured intracranial aneurysms in the Norwegian Nord-Trøndelag Health Study (HUNT): risk of rupture calculated from data in a population-based cohort study. Neurosurgery, 2013, 73: 256-261.
60. Rinkel GJ, Algra A. Long-term outcomes of patients with aneurysmal subarachnoid haemorrhage. Lancet Neurol, 2011, 10: 349-356.
61. Bodle JD, Feldmann E, Swartz RH, et al. High-resolution magnetic resonance imaging: an emerging tool for evaluating intracranial arterial disease. Stroke, 2013, 44: 287-292.
62. Can A, Du R. Association of hemodynamic factors with intracranial aneurysm formation and rupture: Systematic review and meta-analysis. Neurosurgery, 2016, 78: 510-520.
63. Isoda H, Ohkura Y, Kosugi T, et al. Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics. Neuroradiology, 2010, 52: 913-920.
64. Redekop G, TerBrugge K, Montanera W, et al. Arterial aneurysms associated with cerebral arteriovenous malformations: classification, incidence, and risk of hemorrhage. J Neurosurg, 1998, 89(4): 539-546.
65. Duong DH, Young WL, Wang MC, et al. Feeding artery pressure and venous drainage pattern are primary determinants of hemorrhage from cerebral arteriovenous malformations. Stroke, 1998, 29(6): 1167-1176.
66. Kellner CP, McDowell MM, Phan MQ, et al. Number and location of draining veins in pediatric areteriovenous malformations: association with hemorrhage. J Neurosurg Pediatrics, 2014, 14: 538-545.
67. Yates PA, Villemagne VL, Ellis KA, et al. Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations. Front Neurol, 2014, 4: 205.
68. Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol, 2009, 8(2): 165-174.
69. Suzuki J, Takaku A. Cerebralvascular "moyamoya" disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol, 1969, 20: 288-299.
70. Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage. Lancet, 2017, 389: 655-666.
71. Penn DL, Witte SR, Komotar RJ, et al. The role of vascular remodeling and inflammation in the pathogenesis of intracranial aneurysms. J Clin Neurosci, 2014, 21: 28-32.
72. Alg VS, Sofat R, Houlden H, et al. Genetic risk factors for intracranial aneurysms: a meta-analysis in more than 116 000 individuals. Neurology, 2013, 80: 2154-2165.
73. Cauley KA, Andrews T, Gonyea JV, et al. Magnetic resonance diffusion tensor imaging and traetography of intracranial cavernous malformations: preliminary observations and characterization of the hemosiderin rim. J Neurosurg, 2010, 112(4): 814-823.
74. Kim JS, Yang SH, Kim MK, et al. Cavernous angioma in the falx cerebri: a case report. J Korea Med Sci, 2006, 21(5): 950-953.
75. Gastillo M, Morrison T, Shaw JA, et al. MR imaging and histologic features of capillary telangiect asia of the basal ganglia. AJNR, 2001, 22(8): 1553-1555.
76. Wang Y, Zhao X, Liu L, et al. Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: the Chinese Intracranial Atherosclerosis (CICAS) Study. Stroke, 2014, 45(3): 663-669.
77. Chappell FM, Wardlaw JM, Young GR, et al. Carotid artery stenosis: accuracy of noninvasive tests—individual patient data meta-analysis. Radiology, 2009, 251(2): 493-502.
78. Palmefors H, DuttaRoy S, Rundqvist B, et al. The effect of physical activity or exercise on key biomarkers in atherosclerosis—a systematic review. Atherosclerosis, 2014, 235(1): 150-161.
79. Leadbetter WF, Burkland CE. Hypertension in unilaleral renal disease. J Urol, 1938, 39: 611.
80. MeCormack LJ, Hazard JB, Poutasse EF. Obstructive lesions of the renal artery associated with remediable hypertension. Am J Pathol, 1958, 34: 582.
81. Schievink WI. Spontaneous dissection of the carotid and vertebral arteries. N Engl J Med, 2001, 344(12): 898-906.
82. Debette S, Leys D. Cervical-artery dissections: predisposingfactors, diagnosis, and outcome. Lancet Neurol, 2009, 8(7): 668-678.
83. Silbert PL, Mokri B, Sehievink WI. Headache and neck pain inspontaneous internal carotid and vertebral artery dissections, Neurology, 1995, 45(8): 1517-1522.
84. Ahn SS, Kim BM, Suh SH, et al. SpontaneousSymptomatic Intracranial Vertebrobasilar Dissection: Initial and Followup Imaging Findings. Radiology, 2012, 264: 196-202.
85. Fugate JE, Rabinstein AA. Posterior reversible encephalopathy syndrome: clinical and radiological manifestations, pathophysiology, and outstanding questions. Lancet Neurol, 2015, 14: 914-925.
86. Anand P, Orru E, Izbudak I, et al. Venous hypertensive encephalopathy secondary to venous sinus thrombasis and dural arteriovenous fistula. Pract Neurol, 2017, 17(4): 312-313.
87. McKinney AM, Sarikaya B, Gustafson C, et al. Detection of microhemorrhage in posterior reversible encephalopathy syndrome using susceptibility-weighted imaging. AJNR, 2012, 33(5): 896-903.
88. Lee SY, Kim SH, Lee SH, et al. Serial MR spectroscopy in relapsing reversible posterior leukoencephalopathy syndrome. Neurologist, 2009, 15(6): 338-341.
89. Jones BV, Egelhoff JC, Patterson RJ. Hypertensive encephalopathy in children. AJNR, 1997, 18(1): 101-106.
90. Alhilali LM, Reynolds AR, Fakhran S. A multi-disciplinary model of risk factors for fatal outcome in posterior reversible encephalopathy syndrome. J Neurol Sci, 2014, 347(1-2): 59-65.
91. Pirker A, Kramer L, Voller B, et al. Type of edema in posterior reversible encephalopathy syndrome depends on serum albumin levels: an MR imaging study in 28 patients. AJNR Am J Neuroradiol, 2011, 32(3): 527-531.
92. Gao B, Yu B X, Li R S, et al. Cytotoxic Edema in Posterior Reversible Encephalopathy Syndrome: Correlation of MRI Features with Serum Albumin Levels. AJNR Am J Neuroradiol, 2015, 36(10): 1884-1889.
93. Schweitzer AD, Parikn NS, Askin G, et al. Imaging characteristics associated with clinical outcomes in posterior reversible encephalopathy syndrome. Neuroradiology, 2017, 59(4): 379-386.
94. Katz BS, Fugate JE, Ameriso SF, et al. Clinical worsening in reversible cerebral vasconstriction syndrome. JAMA Neurol, 2014, 71(1): 68-73.
95. Campi A, Benndorf G, Filippi M, et al. Primary angiitis of the central nervous system: serial MRI of brain and spinal cord. Neuroradiology, 2001, 43(8): 599-607.
96. Cellucci T, Tyrrell PN, Sheikh S, et al. Childhood primary angiitis of the central nervous system: identifying disease trajectories and early risk factors for persistently higher disease activity. Arthritis Rheum, 2012, 64(5): 1665-1672.
97. Boulouis G, De BH, Zuber M, et al. Primary Angiitis of the Central Nervous System: Magnetic Resonance Imaging Spectrum of Parenchymal, Meningeal, and Vascular Lesions at Baseline. Stroke, 2017, 48(5): 1248-1255.
98. Hajj-Ali RA, Langford CA. Chapter 92-Primary Angiitis of the Central Nervous System. Kelley & Firesteins Textbook of Rheumatology, 2017: 1581-1588.