电动车辆能量转换与回收技术
上QQ阅读APP看书,第一时间看更新

参考文献

[1] Wang C,Wu H,Chen Z,et al.Self-healing chemistry enables the stable operation of silicon mi-croparticle anodes for high-energy lithium-ion batteries[J].Nat Chem 2013-17-1802-9.

[2] Favors Z J,Wang W,Bay H H,et al.Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries[J].Sci Rep 2014-4-5121-7.

[3] Li Y,Song J,Yang J.Progress in research on the performance and service life of batteries mem-brane of new energy automotive[J].Chin Sci Bull 2012-57-4153-9.

[4] Li Y,Song J,Yang J.Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes[J].Renew Sustain Energy Rev,2014,10:1016.

[5] Suo L M,Hu Y S,Li H et al.A new class of solvent-in-salt electrolyte for high-energy re-chargeable metallic lithium batteries[J].Nat Commun 2013-4-148-53.

[6] Shin B R,Nam Y J,Kim J W,et al.Interfacial architecture for extra Li+storage in all-solid-state lithium batteries[J].Sci Rep 2014-4-5572-81.

[7] Ebner M,Geldmacher F,Marone F,et al.X-Ray tomography of porous,transition metal oxide based lithium lon battery electrodes[J].Adv Energy Mater 2013-10-1012-9.

[8] Jung D S,Hwang T H,Park S B,et al.Spray drying method forlarge-scale and high-perform-ance silicon negative electrodes in Li-ion batteries[J].Nano Lett,2013-13-2092-7.

[9] Liu G,Zheng H,Song X,et al.Particles and polymer binder interaction:a controlling factor in lithium-ion electrode performance[J].Electrochem Soc,2012-159-A214-21.

[10] De Volder M F L,Tawck S H,Baughman R H,et al.Carbonnanotubes:present and future commercial applications[J].Science,2013-339-535-9.

[11] Wang X J,Hou Y Y,Zhu Y S,et al.An aqueous rechargeable lithium battery using coated Li metal as anode[J].Sci Rep,2013-3-1401-7.

[12] Wang J J,Sun X L.Understanding and recent development of carboncoating on LiFePO4 cath-ode materials for lithium-ion batteries[J].Energy Environ Sci,2012-5-5163-85.

[13] Liu N,Lu Z D,Zhao J,et al.A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J].Nat Nanotechnol,2014-9-187-92.

[14] Yi R,Dai F,Gordin M L,et al.Micro-sized Si-C compositewith interconnected nanoscale building blocks as high-performance anodesfor practical application in lithium-ion batteries[J].Adv Energy Mater 2013(3):295-300.

[15] Song B H,Lai M O,Liu Z W,et al.Graphene-based surfacemodification on layered Li-rich cathode for high-performance Li-ion batteries[J].Mater Chem,2013-A1-9954-65.

[16] Catalan G,Seidel J,Ramesh R,et al.Domain wall nanoelectronics[J].Rev Mod Phys,2012-84-119-56.

[17] Wang C,Wu H,Chen Z,et al.Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries[J].Nat Chem,2013-17-1802-9.

[18] Favors Z J,Wang W,Bay H H,et al.Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries[J].Sci Rep,2014-4-5121-7.

[19] Tee B C,Wang C,Allen R,et al.An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronicskin applications[J].Nat Nanotechnol,2012-7-825-32.

[20] Sathiya M,Rousse G,Ramesha K,et al.Reversible anionic redox chemistry in high-capacity layered-oxide electrodes[J].Nat Mater,2013-12-827-35.

[21] Bouchet R,Maria S,Meziane R,et al.,Single-ion BAB triblock copolymers as highly effi-cient electrolytes for lithium-metal batteries[J].Nat Mater,2013-12-452-7.

[22] Szczech J R,Jin S.Nanostructured silicon for high capacity lithium batteryanodes[J].Ener-gy Environ Sci,2011(4):56-72.

[23] Zhao Y L,Feng J G,Liu X,et al.Self-adaptive strain-relaxation optimization for high-en-ergy lithium storage material through crumpling of graphene[J].Nat Commun,2014-5-4565-73.

[24] Guo B,Ruan H,Zhen C,et al.Hierarchical LiFePO4 with a controllable growth of the(010)facet for lithium-ion batteries[J].Sci Rep,2013-3-278-88.