参考文献
[1] Ohlberg S M, Alexander L E, Warrick E L. Crystallinity and orientation in silicone rubber. I. X-ray studies[J]. Journal of Polymer Science, 1958, 27(115):1-17.
[2] Warrick E L. Crystallinity and orientation in silicone rubber. II. Physical measurements [J]. Journal of Polymer Science, 1958, 27(115):19-38.
[3] Gent A N, Zhang L Q. Strain-induced crystallization and strength of elastomers. I. Cis-1,4-polybutadiene[J]. Journal of Polymer Science Part B: Polymer Physics, 2001, 39(7): 811-817.
[4] Gent A N, Kawahara S. Crystallization of cis- and trans-1,4-polyisoprene dispersed in SBR[J]. Rubber Chemistry and Technology, 1998, 71(5):837-845.
[5] De Candia F, Romano G. Melting behavior of cis-polybutadiene crystallized under stress[J]. Journal of Applied Polymer Science, 1989, 38(2):249-256.
[6] Maynard J T, Mochel W E. The structure of neoprene. Ⅵ. Crystallization [J]. Rubber Chemistry and Technology, 1954, 13(69):235-250.
[7] Zhang P, Huang G, Qu L, et al. Strain-induced crystallization behavior of polychloroprene rubber[J]. Journal of Applied Polymer Science, 2011, 121(1):37-42.
[8] Toki S, Sics I, Ran S F, et al. Strain-induced molecular orientation and crystallization in natural and synthetic rubbers under uniaxial deformation by in-situ synchrotron X-ray study[J]. Rubber Chemistry and Technology, 2004, 37(2): 317-335.
[9] Bekkedahl N, Wood L A. Crystallization of vulcanized rubber[J]. Industrial & Engineering Chemistry, 1941, 33(3): 381-384.
[10] Bekkedahl N. Forms of rubber as indicated by temperature-volume relationship[J]. Rubber Chemistry and Technology, 1935, 8(1): 5-22.
[11] Gent A N. Crystallization in natural rubber. Ⅳ. Temperature dependence[J]. Journal of Polymer Science, 1955, 18(89):321-334.
[12] Gent A N, Zhang L Q. Strain-induced crystallization and strength of rubber[J]. Rubber Chemistry and Technology, 2002, 75(5):923-934.
[13] Wang Zhenhua, Liu Jun, Wu Sizhu, Wang Wenchuan, Zhang Liqun. Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers[J]. Physical Chemistry Chemical Physics, 2010, 12: 3014-3030.
[14] Iler R K. The chemistry of silica. The chemistry of silica[J]. Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, 1979.
[15] Wolff S Chemical aspects of rubber reinforcement by fillers. Rubber Chemistry and Technology, 1996, 69(3): 325-346.
[16] Wolff S. Reinforcing and vulcanization effects of silane Si69 in silica-filled compounds[J]. Kautsch Gummi Kunstst, 1981, 34: 280.
[17] Thum F, Wolff S. New organosilanes for tire industry[J]. KGKKautschuk Gummi Kunststoffe, 1975, 28(12): 733-739.
[18] Sengloyluan K, Sahakaro K, Dierkes W K, et al. Reinforcement efficiency of silica in dependence of different types of silane coupling agents in natural rubber-based tire compounds [J]. KGK Kautschuk Gummi Kunststoffe, 2016,69(5): 44-53.
[19] Tang Z, Huang J, Wu X, et al. Interface engineering toward promoting silanization by ionic liquid for high-performance rubber/silica composites[J]. Industrial & Engineering Chemistry Research, 2015, 54(43): 10747-10756.
[20] Zhang H, Chen J F, Zhou H K, et al. Preparation of nano-sized precipitated calcium carbonate for PVC plastisol rheology modification[J]. Journal of Materials Science Letters, 2002, 21(16):1305-1306.
[21] 王炼石, 吴向东. 超细碳酸钙填充粉末SBR的制备及其硫化胶的性能[J]. 橡胶工业, 1995, 42(7): 396-402.
[22] Okada A, Kawasumi M, Usuki A, et al. Synthesis and properties of nylon-6/clay hybrids[J]. Polymer based molecular composites, 1990, 170: 45-50.
[23] Kawasumi M. The discovery of polymer-clay hybrids[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(4): 819-824.
[24] Powell C, Beall G. Physical properties of polymer/clay nanocomposites[J]. Current Opinion in Solid State and Materials Science, 2006, 10(2): 73-80.
[25] Yahaya L E, Adebowale K O, Menon A R R. Mechanical properties of organomodified kaolin/natural rubber vulcanizates[J]. Applied Clay Science, 2009, 46(3): 283-288.
[26] Gatos K G, Karger-Kocsis J. Effect of the aspect ratio of silicate platelets on the mechanical and barrier properties of hydrogenated acrylonitrile butadiene rubber (HNBR)/layered silicate nanocomposites[J]. European Polymer Journal, 2007, 43(4): 1097-1104.
[27] Choudalakis G, Gotsis A D. Permeability of polymer/clay nanocomposites: A review[J]. European Polymer Journal, 2009, 45(4): 967-984.
[28] Herrera-Alonso J M, Sedláková Z, Marand E. Gas transport properties of polyacrylate/clay nanocomposites prepared via emulsion polymerization[J]. Journal of Membrane Science, 2010, 363(1-2): 48-56.
[29] Maji P K, Das N K, Bhowmick A K. Preparation and properties of polyurethane nanocomposites of novel architecture as advanced barrier materials[J]. Polymer, 2010, 51(5): 1100-1110.
[30] Chen K, Susner M A, Vyazovkin S. Effect of the brush structure on the degradation mechanism of polystyrene-clay nanocomposites[J]. Macromolecular Rapid Communications, 2005, 26(9): 690-695.
[31] Vyazovkin S, Dranca I, Fan X, Advincula R. Kinetics of the thermal and thermo-oxidative degradation of a polystyrene-clay nanocomposite[J]. Macromolecular Rapid Communications, 2004, 25(3): 498-503.
[32] Kiliaris P, Papaspyrides C D. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy[J]. Progress in Polymer Science, 2010, 35(7): 902-958.
[33] Zhu J, Morgan A B, Lamelas F J, Wilkie C A. Fire properties of polystyrene-clay nanocomposites[J]. Chemistry of Materials, 2001, 13(10): 3774-3780.
[34] Wu Y, Huang H, Zhao W, Zhang H, Wang Y, Zhang L. Flame retardance of montmorillonite/rubber composites[J]. Journal of Applied Polymer Science, 2008, 107(5): 3318-3324.
[35] Wu Y P, Zhao W, Zhang L Q. Improvement of flex-fatigue life of carbon-black-filled styrene-butadiene rubber by addition of nanodispersed clay[J]. Macromolecular Materials & Engineering, 2006, 291(8):944-949.
[36] Wu X, Wang Y, Liu J, et al. Improved crack growth resistance and its molecular origin of natural rubber/carbon black by nanodispersed clay[J]. Polymer Engineering & Science, 2012, 52(5):1027-1036.
[37] Varghese S, Karger-Kocsis J, Gatos K G. Melt compounded epoxidized natural rubber/layered silicate nanocomposites: structure-properties relationships[J]. Polymer, 2003, 44(14): 3977-3983.
[38] Ma J, Yu Z Z, Kuan H C, Dasari A, Mai Y W. A new strategy to exfoliate silicone rubber/clay nanocomposites[J]. Macromolecular Rapid Communication, 2005, 26(10): 830-833.
[39] Jeon H S, Rameshwaram J K, Kim G, et al. Characterization of polyisoprene-clay nanocomposites prepared by solution blending[J]. Polymer, 2003, 44(19): 5749-5758.
[40] Ma J, Xu J, Ren J H, Yu Z Z, Mai Y W. A new approach to polymer/montmorillonite nanocomposites[J]. Polymer, 2003, 44(16): 4619-4624.
[41] Sadhu S, Bhowmick A K. Preparation and properties of nanocomposites based on acrylonitrile-butadiene rubber, styrene-butadiene rubber, and polybutadiene rubber[J]. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42(9): 1573-1585.
[42] Wang Y, Zhang L, Tang C, Yu D. Preparation and characterization of rubber-clay nanocomposites[J]. Journal of Applied Polymer Science, 2000, 78(11): 1879-1883.
[43] Zhang L Q, Wu Y P, Wang Y Q, Tian M, Jia Q, Qi Q. A universal preparation method for rubber nanocomposites- latex compounding method[A]//Latex 2006, International Conference on Latex and Latex Based Products, 4th[C]. Frankfurt, Germany: Rapra Technology Ltd, Shrewsbury, UK, 2006.
[44] Wu Y P, Wang Y Q, Zhang H F, et al. Rubber-pristine clay nanocomposites prepared by co-coagulating rubber latex and clay aqueous suspension[J]. Composites Science & Technology, 2005, 65(7-8):1195-1202.
[45] He S J, Wang Y Q, Feng Y P, et al. The preparation of an elastomer/silicate layer nanocompound with an exfoliated structure and a strong ionic interfacial interaction by utilizing an elastomer latex containing pyridine groups[J]. Nanotechnology, 2010, 21(11):115601.
[46] Roy N, Bhowmick A K. Novel in situ polydimethylsiloxane-sepiolite nanocomposites: Structure-property relationship[J]. Polymer, 2010, 51(22): 5172-5185.
[47] Yilmaz O, Cheaburu C N, Durraccio D, Gulumser G, Vasile C. Preparation of stable acrylate/montmorillonite nanocomposite latex via in situ batch emulsion polymerization: effect of clay types[J]. Applied Clay Science, 2010, 49(3): 288-297.
[48] He S J, Wang Y Q, Wu Y P, et al. Preparation, structure, performance, industrialization and application of advanced rubber/clay nanocomposites based on latex compounding method[J]. Plastics Rubber and Composites, 2010, 39(1): 33-42.
[49] 黄家明. 海南橡胶万吨级纳米黏土天然橡胶产业化关键技术通过鉴定[J]. 橡胶科技, 2018, 16(2):42.
[50] 吴晓辉, 李佰发, 王益庆,等. 黏土/天然橡胶纳米复合材料在矿用轮胎胎面胶中的应用[J]. 橡胶工业, 2017, 64(4):223-227.
[51] 张钊, 戴陈兵, 卢咏来. 植活式纳米氧化锌在天然橡胶中的应用研究[J]. 橡胶工业, 2017, 64(4):213-218.
[52] Radushkevich L V, Lukyanovich V M. O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznomkontakte[J]. Zurn Fisic Chim, 1952, 26: 88-95.
[53] Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzene decomposition[J]. Journal of Crystal Growth, 1976, 32: 335-349.
[54] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56.
[55] 张强, 黄佳琦, 赵梦强, 等. 碳纳米管的宏量制备及产业化. 中国科学:化学, 2013, 43: 641-666.
[56] Liu J, Lu Y L, Tian M, et al. The interesting influence of nanosprings on the viscoelasticity of elastomeric polymer materials: simulation and experiment[J]. Advanced Functional Materials, 2013, 23: 1156-1163.
[57] Lu Y, Liu J, Hou G, et al. From nano to giant? Designing carbon nanotubes for rubber reinforcement and their applications for high performance tires[J]. Composites Science and Technology, 2016, 137, 94-101.
[58] 卢咏来, 宋洋, 张立群, 吴友平, 刘力, 田明. 一种低滞后抗静电节油轮胎用胎面胶材料及其制备方法: ZL20141033692.4[P]. 2016-02-17.
[59] Endo M, Noguchi T, Ito M, et al. Extreme-performance rubber nanocomposites for probing and excavating deep oil resources using multi-walled carbon nanotubes[J]. Advanced Functional Materials, 2008, 18(21): 3403-3409.
[60] Zhan Y, Wu J, Xia H, et al. Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process[J]. Macromolecular Materials and Engineering, 2011, 296(7): 590-602.
[61] Potts J R, Shankar O, Du L, et al. Processing-morphology-property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites[J]. Macromolecules, 2012, 45(15): 6045-6055.
[62] Yang Z, Liu J, Liao R, et al. Rational design of covalent interfaces for graphene/elastomer nanocomposites[J]. Composites Science and Technology, 2016, 132: 68-75.
[63] Boland C S, Khan U, Ryan G, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites[J]. Science, 2016, 354(6317): 1257.
[64] Das A, Wang D Y, Leuteritz A, et al. Preparation of zinc oxide free, transparent rubber nanocomposites using a layered double hydroxide filler[J]. Journal of Materials Chemistry, 2011, 21(20): 7194-7200.
[65] Kuang Z, Chen Y, Lu Y, et al. Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity[J]. Small, 2015, 11(14): 1655-1659.
[66] Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737.
[67] Wu S, Weng P, Tang Z, et al. Sustainable carbon nanodots with tunable radical scavenging activity for elastomers[J]. ACS Sustainable Chemistry & Engineering, 2015, 4(1): 247-254.
[68] 张立群, 吴友平,等. 橡胶的纳米增强及纳米复合技术[J]. 合成橡胶工业, 2000, 23(2):71-77.
[69] Hamed G R. Reinforcement of rubber[J]. Rubber Chemistry & Technology, 2000, 73(3):524-533.
[70] Liu J, Zheng Z, Li F, et al. Nanoparticle chemically end-linking elastomer network with super-low hysteresis loss for fuel-saving automobile[J]. Nano Energy, 2016, 28:87-96.
[71] 李汉堂.热塑性弹性体的现状和未来展望[J].世界橡胶工业,2013,40(3):48-56.
[72] 钱伯章.国内外热塑性弹性体市场与产品开发进展[J].化工新型材料,2011,39(8):61-75.
[73] Wanamaker C L,OLeary L E,Lynd N A,et al. Renewable-resource thermoplastic elastomers based on polylactide and polymenthide[J].Biomacromolecules, 2007, 8(11): 3634-3640.
[74] Arriola D J, Canahan E M, Hustad P D, et al. Catalytic production of olefin block copolymers via chain shuttling polemerization [J]. Science, 2006, 312(5):714-719.
[75] Cohn D, Salomon A H. Designing biodegradable muhiblock PCL/PLA thermoplastic elastomers[J]. Biomaterials, 2005, 26(15): 2297-2305.
[76] 翁汉元, 朱长春, 吕国会. 中国聚氨酯工业现状和“十二五”发展规划建议[J].化学推进剂与高分子材料,2012,10(1):1-10.
[77] Qin X, Han B, Lu J, et al. Rational design of advanced elastomer nanocomposites towards extremely energy-saving tires based on macromolecular assembly strategy[J]. Nano Energy, 2018, 6(48): 180-188.
A phr即parts per hundreds of rubber(or resin),表示对100份(以质量计)橡胶(或树脂)添加的份数。