降解石油烃产甲烷菌群筛选及应用
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

参考文献

[1] Suflita J M, Davidova I A, Gieg L M, et al. Anaerobic hydrocarbon biodegradation and the prospects for microbial enhanced energy production[M].Amsterdam: Elsevier Science, 2004:283-305.

[2] Rowe D, Muehlenbachs A. Low-temperature thermal generation of hydrocarbon gases in shallow shales[J]. Nature,1999, 398(6722): 61-63.

[3] Parkes J. Cracking anaerobic bacteria[J]. Nature, 1999,401(6750): 217-218.

[4] Hallmann C, Schwark L, Grice K. Community dynamics of anaerobic bacteria in deep petroleum reservoirs[J]. Nature Geoscience, 2008, 1(9): 588-591.

[5] Head I M, Jones D M, Larter S R. Biological activity in the deep subsurface and the origin of heavy oil[J]. Nature, 2003, 426(6964): 344-352.

[6] Jackson B E, McInerney M J. Anaerobic microbial metabolism can proceed close to thermodynamic limits[J]. Nature, 2002, 415(6870): 454-456.

[7] Larter S R, Wilhelms A, Head I M, et al. The controls on the composition of biodegraded oils in the deep subsurface. Part 1: biodegradation rates in petroleum reservoirs[J].Organic Geochemistry, 2003, 34(4): 601-613.

[8] Jennings E, Tanner R. The Effects of a bacillus biosurfactant on methanogenic hexadecane degradation[J]. Bioremediation Journal, 2004, 8(1/2): 79 86.

[9] Gieg L M, Duncan K E, Suflita J M. Bioenergy production via microbial conversion of residual oil to natural gas[J]. Appied and Environmental Microbiology, 2008, 74(10): 3022-3029.

[10] Youssef N, Elshahed M S, McInerney M J. Microbial process in oil fields: culprits, problems and opportunities, advances in applied microbiology[M]. Amsterdam: Elsevier Academic Press, 2008:141-251.

[11] Belyaev S S, Borzenkov I A, Nazina T N, et al. Use of microorganisms in the biotechnology for the enhancement of oil recovery[J]. Microbiology, 2004, 73(5): 590-598.

[12] McInerney M J, Nagle D P, Knapp R M. Microbially enhanced oil recovery: past, present and future[M]. Petroleum Microbiology, 2005: 215-237.

[13] 王俊, 俞理, 黄立信. 油藏生物气研究进展[J]. 特种油气藏, 2010, 05(4): 8-12.

[14] 王万春,陶明信. 地质微生物作用与油气资源[J].地质通报,2005, 24(10-11): 1022-1026.

[15] 李赞豪, 李季, 向龙斌, 等. 原油的厌氧细菌降解作用及其产物特征[J].石油与天然气地质, 1998, 19(1): 29-34.

[16] 张水昌, 赵文智, 李先奇, 等. 生物气研究新进展与勘探策略[J]. 石油勘探与开发, 2005, 04(3): 90-96.

[17] 汪卫东, 王静, 耿雪丽, 等. 储层残余油生物气化技术现状与展望[J]. 石油地质与工程, 2012, 01(2): 78-81.

[18] Muller F M. On methane fermentation of higher alkanes[J]. Antonie van Leeuwenhoek, 1957, 23(1): 369-384.

[19] Jack T R, Lee E, Mueller J. Anaerobic gas production from crude oil[J]. Microbes and Oil Recovery: International Bioresources Journal, 1985, 1(1): 167-180.

[20] Zengler K, Richnow H H, Rossello-Mora R, et al. Methane formation from long-chain alkanes by anaerobic microorganisms[J]. Nature, 1999, 401(6750): 266–269.

[21] Anderson R T, Lovley D R. Hexadecane decay by methanogenesis[J]. Nature, 2000, 404(13): 722–723.

[22] Townsend G T, Prince R C, Suflita J M. Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer[J]. Environmental Sci ence and Technology, 2003, 37(22): 5213–5218.

[23] Siddique T, Fedorak P M, Foght J M. Biodegradation of short-chain n-alkanes in oil sands tailings under methanogenic conditions[J]. Environmental Science and Technology, 2006, 40(17): 5459–5464.

[24] Jones D M, Head I M, Gray N D, et al. Crude oil biodegradation via methanogenesis in subsurface petroleum reservoirs[J]. Nature, 2008, 451(7175): 176–181.

[25] Röling W F M, Head I M, Larter S R. The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects[J]. Research in Microbiology, 2003, 154(5): 321-328.

[26] Milkov A V, Dzou L. Geochemical evidence of secondary microbial methane from very slight biodegradation of undersaturated oils in a deep hot reservoir[J]. Geology, 2007, 35(5): 455–458.

[27] Bastin E S,Greer F E,Merritt C A,et al.The presence of sulphate reducing bacteria in oil field waters[J].Science,1926,63(1618):21-24.

[28] Nazina T N, Shestakova N M, Grigor’yan A A, et al. Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang oil field (PR China)[J]. Microbiology, 2006, 75(1): 55-65.

[29] Magot M. Indigenous microbial communities in oil fields, petroleum microbiology[M]. Washington DC: ASM Press, 2005: 21-33.

[30] Lovley D R,Baedecker M J,Lonergan D J,et al.Oxidation of aromatic contaminants coupled to microbial iron reduction[J].Nature,1989,339(6222):297-300.

[31] Gray N.D., Sherry A., Larter S.R., et al. Biogenic methane production in formation waters from a large gas field in the North Sea[J]. Extremophiles, 2009, 13(3): 511-519.

[32] Duncan K.E., Gieg L.M., Parisi V.A., et al. Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities[J]. Environmental Science and Technology, 2009, 43(20): 7977-7984.

[33] Aitken C.M., Jones D.M., Larter S.R. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs[J]. Nature, 2004, 431(7006): 291-294.

[34] 冯一潇. 油藏发酵细菌的鉴定及石油烃厌氧生物代谢机理初探[D]. 北京: 中国农业科学院, 2009.

[35] 承磊. 石油烃厌氧生物降解过程中的产甲烷古菌研究[D]. 北京: 中国农业科学院, 2007.

[36] 刘金峰,牟伯中. 油藏极端环境中的微生物[J]. 微生物学杂志, 2004, 24(4): 31-34.

[37] 黎霞. 油藏发酵细菌的鉴定及石油烃厌氧生物降解研究[D]. 北京: 中国农业科学院, 2008.

[38] 吴伟林. 石油烃厌氧降解菌的筛选及其降解特性研究[D]. 青岛: 中国石油大学(华东), 2011.

[39] Mbadinga Serge Maurice. 高温油藏微生物群落结构及石油烃厌氧降解产甲烷体系构建研究[D]. 上海: 华东理工大学, 2012.

[40] 麻婷婷. 乙酸和硫酸盐对石油烃降解产甲烷过程影响的研究[D].北京: 中国农业科学院, 2014.

[41] 周蕾. 厌氧烃降解产甲烷菌系的组成及其代谢产物的特征[D]. 上海: 华东理工大学, 2012.

[42] 何乔. 烃类化合物厌氧降解产甲烷中间代谢产物初探[D]. 北京: 中国农业科学院, 2013.

[43] 王立影. 烷烃厌氧降解产甲烷体系菌群结构与功能的研究[D].上海: 华东理工大学, 2011.

[44] 丁晨. 低温石油烃降解产甲烷富集物的培养及微生物群落结构分析[D].北京: 中国农业科学院, 2013.

[45] 李凯平. 长链烷烃厌氧降解产甲烷体系的菌群组成及变化[D].上海: 华东理工大学, 2012.

[46] Bauschlicher J.R., Langhoff S.R. Bond dissociation energies for substituted polycyclic aromatic hydrocarbons and their cations[J]. Molecular Physics, 1999, 96(4): 471-476.

[47] Widdel F., Rabus R. Anaerobic biodegradation of saturated and aromatic hydrocarbons[J]. Current Opinion Biotechnology, 2001, 12(3): 259-276.

[48] 王俊. 油藏产气微生物代谢机理研究[D]. 北京: 中国科学院研究生院(渗流流体力学研究所), 2011.

[49] Dolfing J., Larter S.R., Head I.M. Thermodynamic constraints on methanogenic crude oil biodegradation[J]. The ISME Journal, 2008, 2(4): 442-452.

[50] Westerholm M. Biogas production through the syntrophic acetate-oxidising pathway: Characterization and detection of syntrophic acetate-oxidising bacteria[M]. Uppsala: Swedish University of Agricultural Sciences, 2012:15-29.

[51] 朱光有, 张水昌, 赵文智, 等. 中国稠油区浅层天然气地球化学特征与成因机制[J]. 中国科学: D 辑, 2008, 37(A02): 80-89.

[52] Roling W.F.M., Head I.M., Larter S.R. The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects[J]. Research in Microbiology, 2003, 154(5): 321-328.

[53] Chakraborty R., Coates J.D. Anaerobic degradation of monoaromatic hydrocarbons[J].Applied Microbiology and Biotechnology, 2004, 64(4): 437-446.

[54] Lovley D.R., Baedecker M.J., Lonergan D.J., et al. Oxidation of aromatic contaminants coupled to microbial iron reduction[J]. Nature, 1989, 339(6222): 297-300.

[55] Aeckersberg F., Bak F., Widdel F. Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium[J]. Archives of Microbiology, 1991, 156(1): 5-14.

[56] Heider J., Spormann A.M., Beller H.R., et al. Anaerobic bacterial metabolism of hydrocarbons[J]. FEMS Microbiology Reviews, 1999, 22(5): 459-473.

[57] Spormann A.M., Widdel F. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria[J]. Biodegradation, 2000, 11(2/3): 85-105.

[58] Widdel F., Boetius A., Rabus R. Anaerobic biodegradation of hydrocarbons including methane, the Prokaryotes: Archaea. Bacteria: Firmicutes, Actinomycetes[M]. New York: Springer, 2006: 1028-1049.

[59] Grossi V., Cravo-Laureau C., Guyoneaud R., et al. Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: a summary[J]. Organic Geochemistry, 2008, 39(8): 1197-1203.

[60] Mbadinga S.M., Wang L.Y., Zhou L., et al. Microbial communities involved in anaerobic degradation of alkanes[J]. International Biodeterioration and Biodegradation, 2011, 65(1): 1-13.

[61] Bastin E.S., Greer F.E., Merritt C.A., et al. The presence of sulphate reducing bacteria in oil field waters[J]. Science, 1926, 63(1618): 21-24.

[62] Magot M., Ollivier B., Patel B.K.C. Microbiology of Petroleum reservoirs[J]. Antonievan LeeuwenLhoek, 2000, 77(2): 103-116.

[63] Miranda-Tello E., Fardeau M.L., Sepúlveda J., et al. Garciella nitratireducens gen. nov., sp. nov., an anaerobic, thermophilic, nitrate-and thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(5): 1509-1514.

[64] Foght J. Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects[J].Journal of Molecular Microbiology and Biotechnology, 2008, 15(2-3): 93-120.

[65] 胡恒宇, 顾贵洲, 张强, 赵东风, 等. 残余油微生物气化产甲烷菌群的研究进展[J]. 化学与生物工程, 2014, 31(4): 9-14.

[66] Rabus R., Fukui M., Wilkes H., et al. Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil[J]. Applied and Environmental Microbiology, 1996, 62(10): 3605-3613.

[67] Rueter P., Rabus R., Wilkes H., Aeekersberg F.A., et al. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria[J].Nature, 1994, 372(6505): 455-458.

[68] So C.M., Young L.Y. Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01[J]. Applied and Environmental Microbiology, 1999, 65(12): 5532-5540.

[69] Cravo-Laureau C., Matheron R., Joulian C., Cayol J.L. Desulfatibacillum alkenivorans sp. nov., a novel n-alkene-degrading, sulfate-reducing bacterium, and emended description of the genus Desulfatibacillum[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(11): 1639-1642.

[70] Musat F., Galushko A., Jacob J., et al. Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria[J]. Environmental Microbiology, 2009, 11(1): 209-214.

[71] Dolfing J., Zeyer J., Binder-Eicher P., et al. Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen[J]. Archives of Microbiology, 1990, 154(4): 336-341.

[72] Westerholm M. Biogas production through the syntrophic acetate-oxidising pathway[M].Amsterdam: Elsevier Science, 2012:67-86.

[73] Ziganshin A.M., Schmidt T., Scholwin F., et al. Bacteria andarchaea involved in anaerobic digestion of distillers grains with solubles[J]. Applied Microbiology and Biotechnology, 2011, 89(6): 2039-2052.

[74] Widdel F., Boetius A., Rabus R. Anaerobic Biodegradation of Hydrocarbons Including Methane[J]. Prokaryotes, 2006, 1(2): 323-335.

[75] 蔡云. 石油烃厌氧降解微生物特征及产甲烷古菌研究[D]. 青岛: 中国石油大学(华东),2013.

[76] 张强. 稠油油藏甲烷化内源微生物激活条件研究[D]. 青岛: 中国石油大学(华东), 2014.

[77] 李政. 耐热石油降解混合菌群降解特性及多环芳烃共代谢作用的研究[D]. 青岛:中国石油大学(华东), 2012.

[78] 顾贵州. 石油烃厌氧降解微生物的DGGE分析及产甲烷效率研究[D]. 青岛: 中国石油大学(华东), 2015.

[79] Hu H.Y., Zhao D.F., Zhang Q. Effect of Eutrophic River Water and Trace Element on Oil Gasification into Methane by Indigenous Microbes[J]. Biotechnology, 2015,14(1): 29-35.

[80] 李慧, 陈冠雄, 杨涛, 等. 沈抚灌区含油污水灌溉对稻田土壤微生物种群及土壤酶活性的影响[J]. 应用生态学报, 2005, 16(7): 1355-1359.

[81] Boopathy R. Use of anaerobic soil slurry reactors for the removal of petroleum hydrocarbons in soil[J]. International Biodeterioration and Biodegradation, 2003, 52(3): 161-166.

[82] 刘晓玲.城市污泥厌氧发酵产酸条件优化及其机理研究[D]. 无锡:江南大学, 2009.

[83] Mishra S., Jyot J., Kuhad R.C., et al. Evaluation of inoculum addition to stimulate in situ bioremediation of oil sludge-contaminated soil[J]. Applied and Environmental Microbiology, 2001, 67(4): 1675-1681.

[84] 刘春爽, 赵东风, 吴文华, 等. 芦苇修复新疆石油污染土壤效果[J]. 中国石油大学学报(自然科学版), 2012, 36(2): 186-190.

[85] 马可. 水稻土中甲烷循环的微生物学机理及其主要调控因子[D]. 北京: 中国农业大学, 2010.

[86] 李政, 赵朝成, 张云波, 等. 16 种 EPA-PAHs 复合污染土壤的菌群修复[J]. 中国石油大学学报(自然科学版), 2012, 36(1): 175-181.

[87] Lin T.C., Pan P.T., Cheng S.S. Exsitu bioremediation of oil-contaminated soil[J]. Journal of Hazardous Materials, 2010, 176(1): 27-34.

[88] 彭先芝, 张干, 陈繁忠, 等. 好氧生物降解中烷烃单体稳定同位素分馏及其环境意义[J].科学通报, 2004, 49(24): 2605-2611

[89] 齐永强, 王红旗, 刘敬奇. 土壤中石油污染物微生物降解及其降解去向[J]. 中国工程科学, 2003, 5(8): 70-75.

[90] Fardeau M.L., Ollivier B., Patel B.K.C., et al. Thermotoga hypogea sp. nov” a xylanolytic, thermophilic bacterium from an oil-producing well[J]. International Journal of Systematic Bacteriology, 1997, 47(4): 1013-1019

[91] Plugge C.M., Balk M., Zoetendal E.G., et al. Gelria glutamica gen. nov” sp. nov” a thermophilic, obligately syntrophic, glutamate-degrading anaerobe[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(2): 401-407

[92] Staley B.F., Francis L., Barlaz M.A. Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse[J]. Applied and Environmental Microbiology, 2011, 77(7): 2381-2391.

[93] 贾仲军. 稳定性同位素核酸探针技术 DNA-SIP 原理与应用[J]. 微生物学报, 2011, 51(12): 1585-1594.

[94] 张琴, 荚荣, 豆长明, 等. 重金属污染土壤总 DNA 提取方法的研究—土壤预处理和硫酸铵铝在 DNA 提取中的应用[J]. 微生物学通报, 2014, 41(1): 191-199.

[95] Blume F., Bergmann I., Nettmann E., et al. Methanogenic population dynamics during semi‐continuous biogas fermentation and acidification by overloading[J]. Journal of Applied Microbiology, 2010, 109(2): 441-450.

[96] Feng X.M., Karlsson A., Svensson B.H., Bertilsson S. Impact of trace element addition on biogas production from food industrial waste–linking process to microbial communities[J]. FEMS Microbiology Ecology, 2010, 74(1): 226-240.

[97] Fotidis I.A., Karakashev D., Kotsopoulos T.A., et al. Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition[J]. FEMS Microbiology Ecology, 2013, 83(1): 38-48.

[98] Hao L.P., Lu F., He P.J., et al. Predominant contribution of syntrophic acetate oxidation to thermophilic methane formation at high acetate concentrations[J]. Environmental Science and Technology, 2010, 45(2): 508-513.

[99] Cereal Genomics: Methods and Protocols[Z]. Human Press, 2014.

[100] 傅霖, 辛明秀. 产甲烷菌的生态多样性及工业应用[J]. 应用与环境生物学报, 2009, 15(4): 574-578.

[101] 龙胜祥, 陈纯芳, 李辛子, 等. 中国石化煤层气资源发展前景[J]. 石油与天然气地质, 2011, 03(4): 481-488.

[102] Lowe D.C. Global change: A green source of surprise[J]. Nature, 2006, 439(7073): 148-149.

[103] 程海鹰, 肖生科, 马光东, 等. 营养注入后油藏微生物群落16SrRNA基因的T-RFLP对比分析[J]. 石油勘探与开发, 2006, 33(3): 356-359.

[104] Ferry J.G. Methane:small molecule, big impact[J]. Science, 1997, 278(5342): 13-14.

[105] Belyaev S.S., Wolkin R., Kenealy W.R., et al. Methanogenic bacteria from the Bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation[J]. Applied and Environmental Microbiology, 1983, 45(2): 691-697.

[106] Ivanov M.V., Belyaev S.S., Zyakun A.M., et al. Microbiological formation of methane in the oil-field development[J]. Geokhimiya, 1983 (11): 1647-1654.

[107] Ravot G., Magot M., Fardeau M.L., et al. Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well[J]. International Journal of Systematic Bacteriology, 1995, 45(2): 308-314. 

[108] Nilsen R.K., Torsvik T. Methanococcus thermolithotrophicus Isolated from North Sea Oil Field Reservoir Water[J]. Applied and Environmental Microbiology, 1996, 62(2): 728-731.

[109] Ollivier B., Cayol J.L., Patel B.K.C., et al. Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well[J]. FEMS Microbiology Letters, 1997, 147(1): 51-56.

[110] Ollivier B., Fardeau M.L., Cayol J.L., et al. Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well[J]. International Journal of Systematic Bacteriology, 1998, 48(3): 821-828.

[111] Obraztsova A.Y., Shipin O.V., Bezrukova L.V., et al. Properties of the coccoid methylotrophic methanogen, methanococcoides-euhalobius sp-nov[J]. Microbiology, 1987, 56(4): 523-527.

[112] Davidova I.A., Hannsen H.J.M., Stams A.J.M., et al. Taxonomic description of Methanococcoides euhalobius and its transfer to the Methanohalophilus genus[J]. Ailtonie van Leeuwenhoek, 1997, 71(4):313-318.

[113] Ni S.S., Boone D.R. Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil wel, characterization of Msieiliae T4/MT, and emendation of M.sieiliae[J]. International Journal of Systematic and Evolutionary Microbiology 1991, 41(3):410-416.