第22章 光的干涉
一、选择题
1.在玻璃(折射率n3=1.60)表面镀一层MgF2薄膜(折射率n2=1.38)作为增透膜。为了使波长为500nm的光从空气(nl=1.00)向薄膜正入射时反射尽可能少,MgF2薄膜的最少厚度应是( )。[北京邮电大学2010研]
A.90.6 nm
B.125 nm
C.181 nm
D.250nm
【答案】A
【解析】增透膜的机理是使薄膜上下两表面反射的光发生干涉相消。由题知,,光反射时没有半波损失,两反射光干涉相消时应满足关系,此处折射率取n2=1.38,当时有最小厚度膜,最小膜厚为:。
2.在双缝干涉实验中,两条缝的宽度原来是相等的,若其中一缝的宽度略变窄,则( )。[郑州大学2008研]
A.干涉条纹的间距变宽
B.干涉条纹的间距变窄
C.干涉条纹的间距不变,但原极小处的强度不再为零
D.不再发生干涉现象
【答案】C
3.如图22-1所示装置,A为一柱面状平凹透境,B为一平面玻璃,用波长为λ的单色光自上方垂直入射,观察空气膜的反射光的等厚干涉条纹。若空气膜的最大厚度为3λ,则可观察到的全部明条纹数是( )。[电子科技大学2006研]
图22-1
A.6条
B.12条
C.7条
D.14条
【答案】B
二、填空题
1.在迈克耳孙干涉仪的可动反射镜移动距离d的过程中,观察到干涉条纹移动了N条,则所用单色光的波长λ=( )。[北京邮电大学2010研]
【答案】
【解析】根据迈克耳孙干涉仪的光路图,每平移距离时视场就有一条明纹移过,故
2.用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是______、______。[南京航空航天大学2008研]
【答案】使两缝间距变小;使屏与双缝之间的距离变大。
3.在迈克尔孙干涉仪的一支光路上,垂直于光路放入折射率为n,厚度为h的透明介质薄膜,与未放入此薄膜时相比较,两光束光程差的改变量为______。[南京航空航天大学2007研]
【答案】
4.在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距______;若使单色光波长减小,则干涉条纹间距______。[南京航空航天大学2006研]
【答案】变小;变小
5.用氦-氖激光器发出的波长为632.8nm的单色光做牛顿环实验,测得第k级暗环的半径为5.625mm,第k+5级暗环的半径为7.956mm,则所用平凸透镜的曲率半径R=______,k的级次为______。[南京理工大学2005研]
【答案】;
三、计算题
1.在如图22-2所示的瑞利干涉仪中,T1、T2是两个长度都是l的气室,波长为λ的单色光的缝光源S放在透镜L1的前焦面上,在双缝S1和S2处形成两个同相位的相干光源,用目镜E观察透镜L2焦平面C上的干涉条纹。当两气室均为真空时,观察到一组干涉条纹。在向气室T2中充入一定量的某种气体的过程中,观察到干涉条纹移动了M条。试求出该气体的折射率n(用己知量M,λ和l表示出来)。[华南理工大学2011研]
图22-2
解:设上下两条光路的光程分别为、;当室通气体时,光程分别变为:、
当气室为真空时,光程差为:
当室通气体时,光程差变为:
由已知条件可知:
联立以上各式,可以解得:
2.杨氏双缝实验中,入射光波长,双缝相距d=3mm,观察屏到双缝的距离D=2m。
(1)若用折射率n=1.5的云母片覆盖上面的一个缝,发现第五级明条纹恰好移到原中央明条纹位置,则云母片的厚度e=?
(2)加入云母片后,零级明条纹移动到什么位置(求出零级明条纹到原中央明条纹的距离)? [厦门大学2011研]
解:(1)第五级明条纹处由两缝射来的光的光程差为,由于加入云母片后此条纹处于屏中央位置,所以此光程差完全由云母片提供,
从而可以得到云母片厚度为
(2)未加入云母片时,第k级明条纹在观察屏的位置与条纹级数有如下关系,
加入云母片后,对于零级条纹,其由云母片产生的光程差完全被由两条光线距离产生的光程差抵消,所以零级明条纹出现在原5级条纹的位置,且条纹移动方向与(1)中5级明纹移动方向一致,故零级明纹到原中央明纹的距离为
3.如图22-3所示,在杨氏双缝干涉实验中,若=r2-r1=λ/3,求P点的强度I与干涉加强时最大强度Imax的比值。[华南理工大学2010研]
图22-3
解:设两束光的光强分别为、,则干涉的光强为:
其中
可见,当时,光强为:
最大的光强为:
所以
4.用波长为λ的单色光垂直照射由两块平玻璃板构成的空气劈形膜,已知劈尖角为θ,如果劈尖角变为,从劈棱数起的第四条明条纹位移值△x是多少?[华南理工大学2009研]
解:由劈尖干涉光路图可知,任何两个相邻的明纹之间的距离为:
由于在空气中,取 ,则:
当劈尖角为θ时,两个相邻的明纹之间的距离为:
当劈尖角变为时,两个相邻的明纹之间的距离为:
取两玻璃板连接处为基准,从劈棱数起的第四条明条纹位移值△x是:
5.利用劈尖的等厚干涉条纹可以测量很小的角度。今在很薄的劈尖玻璃板上,垂直地射入波长为589.3nm的钠光,相邻暗条纹间距为5.0mm,玻璃的折射率为1.52,求此劈尖的夹角。[郑州大学2008研]
解:光程差满足,得:
==3.88×10-5
劈尖夹角:
6.波长分别为λ1和λ2(设λ1>λ2)的两种单色平行光垂直照射到劈尖形成的薄膜上,已知劈尖折射率为n(n>1),劈尖薄膜放在空气中,在反射光形成的干涉条纹中,这两种单色光的第5条暗纹中心所对应的薄膜厚度之差Δe为多大?[浙江大学2008研]
解:暗纹满足,所以:
所以薄膜厚度之差:
7.如图22-4所示,已知杨氏双缝实验中,双缝相距d=0.2mm,观察屏到双缝的距离D=0.5m。今用一厚度mm的云母片覆盖上面的一个缝,结果发现零级明条纹移动到离中心点距离为x=2.0mm处,求云母片的折射率。[厦门大学2006研]
图22-4
解:光程差:
得云母片折射率:
=1.5
8.如图22-5所示,用肉眼直接观察薄膜表面的干涉条纹。设薄膜的折射率为1.5,上方为空气,瞳孔直径为3mm,与观察点P相距30cm,视线与表面法线夹角为30°。
(1)分别计算膜厚2cm及20m两种情况下,点源、在观察点P产生的光程差的改变量。
(2)如果为了保证条纹有一定的反衬度,要求上述光程差改变量的数量级不能超过多少?以此来估计对膜厚h的限制。[南京大学2005研]
图22-5
解:(1)不妨设光源Q1的入射角为,折射角为;光源Q2的入射角为,折射角为。
光程差:
二者光程差为:
光源Q1、Q2入射角之差为:
由折射定理可得:
对上式求导:
即
由题意可知,,,,,代入解得:
当时,;当,。
(2)要保证条纹的反衬度,需满足:
于是有:
即
9.焦距f=10cm的薄透镜沿其直径部切为二,再沿切口的垂直方向将两半移开使得它们具有的距离,在透镜前方,在对称轴上与透镜相距为处放一单色点光源,其波长为。在透镜另一侧与透镜相距为处,与对称轴垂直地放一屏幕,如图22-6所示。
(1)试问为什么会发生干涉。
(2)试求屏幕上出现的相邻干涉条纹的间距。
(3)试求干涉条纹的数目。[南京大学2004研]
图22-6
解:(1)光线经过上述装置后被分成两类:穿过透镜产生折射的光;从透镜缝隙直射的光。二者具有相同的频率和振动方向,但存在相位差,所以会发生干涉。
(2)由于光学路径不改变光程,所以光程差为:
干涉条纹的间距为:
(3)光由缝隙直射到屏上的最大垂直分布范围为:
故干涉条纹共7条。