四旋翼无人飞行器设计
上QQ阅读APP看书,第一时间看更新

2.2 四旋翼飞行器的运动控制方法

四旋翼飞行器系统共有4个输入,分别为一个上升力和三个方向的转矩。但是飞行器在空间中却有6个自由度的输出坐标,可以进行三个坐标轴方向的平动运动和围绕三个坐标轴方向的转动运动。

如果沿着任意给定方向的独立运动,飞行器没有给予足够多的运动驱动,那么该飞行器就是欠驱动的。可见,四旋翼飞行器是欠驱动和动力不稳定的系统。因此,针对该系统实现全部的运动控制目标,必然存在旋转力矩与平移系统的耦合。传统的纵列式直升机为了平衡反扭矩,需借助尾桨来实现。

四旋翼飞行器采用了4个旋翼的机械结构,4个电机作为飞行的直接动力源,通过改变4个螺旋桨的转速,进而改变螺旋桨产生的升力来控制飞行器姿态和运动。这种设计理念使飞行器结构和动力学特性得到了很大简化。

四旋翼的前桨1和后桨3逆时针旋转,左右2、4两桨顺时针旋转,这种反向对称结构代替了传统直升机尾旋翼。在飞行过程中,如图2-2所示,改变4个旋翼螺旋桨的转速,可使四旋翼产生各种飞行姿态,也可使四旋翼飞行器向预定方向运动,完成任务。

图2-2 四旋翼飞行器飞行运动原理

根据四旋翼飞行器的运动方式的特点将其飞行控制划分为4种基本的飞行控制方式:

·垂直飞行控制;

·横滚控制;

·俯仰控制;

·偏航控制。

下面分别对以上4种飞行控制方式进行阐述。

垂直飞行控制主要是控制飞机的爬升、下降和悬停。如图2-3所示,弧线箭头方向表示螺旋桨旋转的方向。

图2-3 垂直飞行控制示意图

当四旋翼处于水平位置时,在垂直方向上,惯性坐标系同机体坐标系重合。同时增加或减小4个旋翼的螺旋桨转速,4个旋翼产生的升力使得机体上升或下降,从而实现爬升和下降。悬停时,保持4个旋翼的螺旋桨转速相等,并且保证产生的合推力与重力相平衡,使四旋翼在某一高度处于相对静止状态,各姿态角为零。垂直飞行控制的关键是要稳定4个旋翼的螺旋桨转速,使其变化一致。

横滚控制,如图2-4所示。通过增加左边旋翼螺旋桨转速,使拉力增大,相应减小右边旋翼螺旋桨转速,使拉力减小,同时保持其他两个旋翼螺旋桨转速不变。这样由于存在拉力差,机身会产生侧向倾斜,从而使旋翼拉力产生水平分量,使机体向右运动。当Δ2=Δ4时可控制四旋翼飞行器作侧向平飞运动。

图2-4 横滚运动控制示意图

俯仰控制,如图2-5所示,与横滚控制相似,在保持左右两个旋翼螺旋桨转速不变的情况下,减少前面旋翼螺旋桨的转速,并相应增加后面旋翼螺旋桨的转速,使得前后两个旋翼存在拉力差,从而引起机身的前后倾斜,使旋翼拉力产生与横滚控制中水平方向正交的水平分量,使机体向前运动。类似地,当Δ1=Δ3时可控制四旋翼飞行器作纵向平飞运动。

图2-5 俯仰运动控制示意图

偏航控制,如图2-6所示。四旋翼飞行器为了克服反扭矩影响,4个旋翼螺旋桨中的两个顺时针转,两个逆时针转,且对角线上的两个旋翼螺旋桨转动方向相同。

图2-6 偏航控制示意图

反扭矩的大小与旋翼螺旋桨转速有关,当4个旋翼螺旋桨转速不完全相同时,不平衡的反扭矩会引起机体转动。根据上面的原理,可以设计四旋翼飞行器的偏航控制,即同时提升一对同方向旋转的旋翼螺旋桨转速并降低另一对相反方向旋转的旋翼螺旋桨转速,保证转速增加的旋翼螺旋桨转动方向与四旋翼飞行器机身的转动方向相反。