1.4 参考文献
[1] Feigenbaum, E. A., & Feldman, J. (1950). Computing machinery and intelligence. Mind,6(137), 44-53.
[2] Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
[3] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning rep-resentation by back-propagating errors. Nature, 323(3), 533-536.
[4] Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507.
[5] Bengio, Y. (2009). Learning Deep Architectures for AI: Now Publishers.
[6] Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: a critical analysis. Cognition, 28(1–2), 3-71.
[7] Jain, A. K., Mao, J., & Mohiuddin, K. M. (1996). Artificial Neural Networks: A Tutorial.Computer, 29(3), 31-44.
[8] Mcculloch, W. S., & Pitts, W. H. (1943). A logical calculus of ideas imminent in nervous activity.
[9] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain: MIT Press.
[10] Widrow, B. (1960). Hoff: Adaptive switching circuits.
[11] Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4),193-202.
[12] Lecun, Y., & Bengio, Y. (1998). Convolutional networks for images, speech, and timeseries: MIT Press.
[13] Touretzky, D. S., & Hinton, G. E. (1988). A Distributed Connectionist Production System.Cognitive Science, 12(3), 423-466.
[14] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning internal representations by error propagation: MIT Press.
[15] Hofmann, T., Schölkopf, B., & Smola, A. J. (2008). Kernel Methods in Machine Learning.Annals of Statistics, 36(3), 1171-1220.
[16] Heckerman, D. (1992). A tutorial on learning with Bayesian networks: MIT Press.
[17] Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2006). Greedy layer-wise training of deep networks. Paper presented at the International Conference on Neural Information Processing Systems.
[18] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Paper presented at the International Conference on Neural Information Processing Systems.