泡利的错误:科学殿堂的花和草
上QQ阅读APP看书,第一时间看更新

第一部分——数学

1 无穷集合可以比较吗?[1]

大家都知道,自然数(即0,1,2,3,…)有无穷多个,平方数(即0,1,4,9,…)也有无穷多个。现在我们来考虑这样一个问题:自然数和平方数哪个更多?有读者也许会说:“这还用问吗?当然是自然数多啦!”确实,平方数只是自然数的一部分,而整体大于部分,因此自然数应该比平方数更多。但细想一下,事情又不那么简单。因为每个自然数都有一个平方,每个平方数也都是某个自然数的平方,两者可以一一对应。从这个角度讲,它们又谁也不比谁更多,从而应该是一样多的,就好比两堆石头,就算不知道各有多少粒,如果能一粒一粒对应起来,我们就会说它们的数目一样多。

同一个问题,两个相互矛盾的答案,究竟哪一个答案正确呢?

像这种对无穷集合进行比较(即比较元素数目)的问题,曾经让许多科学家感到过困扰。比如著名的意大利科学家伽利略就考虑过我们上面这个问题。他的结论是:那样的比较是无法进行的。

不过,随着数学的发展,数学家们最终还是为无穷集合的比较建立起了系统性的理论,它的基石就是上面提到的一一对应的关系,即:两个无穷集合的元素之间如果存在一一对应,它们的元素数目就被定义为“相等”。按照这个定义,上面两个答案中的后一个,即自然数与平方数一样多,是正确的。

科学人

对无穷集合进行比较的系统理论是德国数学家乔治·康托尔(George Cantor)提出的。康托尔生于1845年,是集合论的奠基者。康托尔的理论是如此新颖,连他自己也曾在给朋友的信件中表示“我无法相信”。与他同时代的许多其他数学家更是对他的理论表示了强烈反对,甚至进行了尖锐攻击。

但时间最终证明了康托尔的伟大。他的集合论成为现代数学的重要组成部分。德国数学大师戴维·希尔伯特(David Hilbert)在一篇文章中表示“没有人能把我们从康托尔为我们开辟的乐园中赶走”。英国哲学家伯特兰·罗素(Bertrand Russell)也称康托尔的理论“也许是这个时代最值得夸耀的成就”。

但有读者也许会问:前一个答案所依据的“整体大于部分”在欧几里得的《几何原本》中被列为公理,不也是很可靠的吗?为什么不能作为对无穷集合进行比较的基石呢?这是因为,两个无穷集合之间通常并不存在一个是另一个的部分那样的关系。比如平方数的集合与素数(即2,3,5,7,…)的集合就谁也不是谁的部分。如果用“整体大于部分”作为基石,就会无法比较。

不过,“整体大于部分”也并没有被抛弃,因为在无穷集合的比较中,还会出现这样的情形,那就是一个无穷集合的元素能与另一个无穷集合的一部分元素一一对应,却不能与它的全体元素一一对应。在这种情形下,数学家们就会依据“整体大于部分”的原则,将后一个无穷集合的元素数目定义为“大于”前一个无穷集合的元素数目(或前一个无穷集合的元素数目“小于”后一个无穷集合的元素数目)。这种情形的一个例子,是自然数集合与实数集合的比较。很明显,自然数集合的元素(即自然数)能与实数集合的一部分元素(即实数中的自然数)一一对应,但它能否与实数集合的全体元素(即实数)一一对应呢?答案是否定的(参阅“微博士”)。因此自然数集合的元素数目“小于”实数集合的元素数目。

微博士

我们在正文中举过一个例子,那就是自然数集合的元素数目“小于”实数集合的元素数目。现在让我们来证明这一点。我们要证明的是自然数不能与0和1之间的实数一一对应(从而当然也不能与全体实数一一对应)。

我们用反证法:假设存在那样的一一对应,那么0和1之间的实数就都能以自然数为序号罗列出来。但是,我们总可以构造出一个新实数,它小数点后的每个数字都在0和9之间,并且第n位数字选成与第n个实数的小数点后第n位数字不同。显然,这样构造出来的实数与任何一个被罗列出来的实数都不同(因为小数点后至少有一个数字不同)。这与0和1之间的实数都能以自然数为序号罗列出来相矛盾。这个矛盾表明自然数是不能与0和1之间的实数一一对应的。

这个证明所用到的构造新实数的方法被称为对角线方法,它在无穷集合的比较中是一种很重要的方法。

现在我们知道了在无穷集合的元素数目之间可以定义“相等”“大于”“小于”这三种比较关系。但这还不等于回答了“无穷集合可以比较吗?”这一问题。因为我们还不知道会不会有某些无穷集合,它们之间这三种关系全都不满足。那样的情形如果出现,就说明有些无穷集合是不能比较的——起码是不能用我们上面定义的这三种关系来比较。

那样的情形会不会出现呢?这是一个很棘手的问题,涉及数学中一个很重要的分支——集合论——的微妙细节。而集合论有几个不同的“版本”,它们对这一问题的答案不尽相同。因此从某种意义上讲,这可以算是一个有争议的问题。不过,对于目前被最多数学家所使用的“版本”来说,这一问题的答案是明确的,即:那样的情形不会出现。换句话说,任何两个无穷集合都是可以比较的。

2012年3月6日写于纽约


(1) 本文是受《十万个为什么》第六版《数学》分册约稿而写的词条,但未被收录。