泡利的错误:科学殿堂的花和草
上QQ阅读APP看书,第一时间看更新

6.5 第二次错误的幕后花絮

以上就是泡利第二次错误的大致情形。值得一提的是,泡利的两次错误都未诉诸论文,这跟爱因斯坦和玻尔的错误相比,无疑是情节轻微的表现。此外,与他在第一次错误中实际起到了“幕后推手”作用,且颇有可辩解之处相类似,泡利的第二次错误不仅情节轻微——甚至没有像第一次错误那样对别人产生过负面影响(即便是“历史旧账”里的二分量方程式,虽被他“错划为”不具有现实意义,但在中微子被发现之前原本也不具有“现实意义”),而且同样也起到了某种“幕后推手”作用,并且也同样有一些可辩解之处。这可以算是泡利第二次错误的幕后花絮。

我们在《玻尔的错误》一文中曾经提到,1929年,在试图解决β衰变中的能量问题时,玻尔再次提出了能量不守恒的提议,并遭到了泡利的反对(24)。但是,比单纯的反对更有建设性的是,泡利于1930年提出了解决这一问题的正确思路:中微子假设——虽然“中微子”这一名称是意大利物理学家恩里科·费米(Enrico Fermi)而不是泡利所取的(25)

泡利不仅提出了中微子假设,而且积极呼吁实验物理学家去搜索它。1930年12月4日,他给在德国图宾根参加放射性研究会议的与会者们发去了一封措辞幽默的公开信。这封公开信以“亲爱的放射性女士和先生们”为称呼,以表达因参加一个舞会而无法与会的“歉意”为结束,内容则是推介他的中微子假设。泡利在信中表示自己“迄今还不敢发表有关这一想法的任何东西”,但由β衰变中的能量问题所导致的“局势的严重性”使他觉得“不尝试就不会有收获”,“必须认真讨论挽救局势的所有办法”,他因此呼吁对中微子假设进行“检验和裁决”。

由于相互作用的极其微弱,中微子直到1956年才由美国物理学家克莱德·柯温(Clyde Cowan)和弗雷德里克·莱因斯(Frederick Reines)等人在实验上找到(26)。这个由泡利提出并呼吁搜索的意在解决β衰变中的能量问题的中微子不仅是弱相互作用的核心参与者之一,而且其状态及相互作用都直接破坏宇称对称性(27),从而堪称是宇称不守恒的“罪魁祸首”——虽然在吴健雄等人的实验中,中微子并不是被直接探测的粒子。从这个意义上讲,泡利对于宇称不守恒而言,是起到了某种“幕后推手”作用的,最低限度说,也是有着藕断丝连的正面影响的,这使他的第二次错误也如第一次错误那样,具有了独特的戏剧性。泡利自己对这种戏剧性也有过一个简短描述:在吴健雄实验成功后不久,泡利在给这位被他赞许为“无论作为实验物理学家还是聪慧而美丽的年轻中国女士”都给他留下深刻印象的物理学家的祝贺信中写道:“中微子这个粒子——对其而言我并非局外人——还在为难我”(28)

泡利为什么对宇称守恒深信不疑呢?他后来在给吴健雄的信中解释说,那是因为宇称在强相互作用下是守恒的,而他不认为守恒定律会跟相互作用的强度有关,因此不相信宇称在弱相互作用下会不守恒。不过,这一理由虽适用于他1957年的观点,却似乎不足以解释他的“历史旧账”,即在1933年出版的量子力学“新约”中以宇称不守恒为由将外尔的二分量中微子方程式视为不具有现实意义。因为那时强相互作用的概念才刚刚因中子的发现(1932年)而诞生,参与强相互作用的重要粒子——介子——尚未被发现,而介子的宇称更是迟至1954年才得到确立,那时的宇称守恒哪怕在强相互作用下恐怕也算不上已被确立,而只是有关对称性的普遍信念的一部分,或是被美国物理学家史蒂文·温伯格(Steven Weinberg)列为爱因斯坦的错误之一的以美学为动机的简单性的一种体现。也许,对那种普遍信念的追求才是泡利此次错误的真正——或最早——的根源。

关于泡利的第二次错误,也有一些可替他辩解的地方,因为无论是有关对称性的普遍信念,还是具体到对宇称守恒的深信不疑,在当时都绝非泡利的独家观点,而在很大程度上可以算是主流看法。虽然李政道和杨振宁的敏锐质疑极是高明,但在质疑得到证实之前,那种主流看法本身其实谈不上错误,因为科学寻求的是对自然现象逻辑上最简单的描述,而对称性正是一种强有力的简化描述的手段。在被证实失效之前,对那样的手段予以信任、坚持,乃至外推是很正常的,也是多数物理学家的共同做法。比如美国实验物理学家诺曼·F.拉姆齐(Norman F. Ramsey, Jr.)曾就是否该将宇称不守恒的可能性诉诸实验征询理查德·费曼(Richard Feynman)的看法,费曼表示他愿以50:1的比例赌那样的实验不会发现任何东西。这跟泡利的“很高的赌注”有着同样的“豪爽”。可惜拉姆齐虽表示这赌约对他已足够有利,却并未真正付诸实践,从而费曼也跟泡利一样在钱财上毫发无损。又比如瑞士物理学家费利克斯·布洛赫(Felix Bloch)曾与斯坦福大学物理系的同事打赌,如果宇称不守恒,他愿吃掉自己的帽子——后来不得不狡辩说幸亏自己没有帽子(29)!这些物理学家都不是无名之辈:布洛赫是1952年的诺贝尔物理学奖得主,费曼是1965年的诺贝尔物理学奖得主,拉姆齐是1989年的诺贝尔物理学奖得主。

最后还有一点值得提到,那就是:泡利从1952年就开始研究场论中的离散对称性,是对基本粒子理论中的对称性进行研究的先驱者和顶尖人物之一。1954年,他与德国物理学家格哈特·吕德斯(Gerhart Lüders)在能量有下界、洛伦兹不变性(Lorentz invariance)等场论的最一般性质的基础之上证明了所谓的CPT对称性——由电荷共轭(charge conjugation)、宇称及时间反演(time reversal)组成的联合对称性必须成立。这个被称为吕德斯-泡利定理(Lüders–Pauli theorem)或CPT定理(CPT theorem)的著名结果在当时似乎是多此一举的,因为其所涉及的电荷共轭、宇称及时间反演对称性被认为分别都是成立的。但随着宇称不守恒的发现,很多同类(即离散)的对称性——如电荷共轭对称性、时间反演对称性、电荷共轭及宇称(charge conjugation and parity,CP)联合对称性等——相继“沦陷”,唯有CPT对称性如激流中的磐石一般屹立不倒,使CPT定理的重要性得到了极大的凸显,成为量子场论——尤其是公理化量子场论——中最基本的定理之一。