深度学习与图像识别:原理与实践
上QQ阅读APP看书,第一时间看更新

1.2.5 自动驾驶/驾驶辅助

自动驾驶汽车是一种通过计算机实现无人驾驶的智能汽车,它依靠人工智能、机器视觉、雷达、监控装置和全球定位系统协同合作,让计算机可以在没有任何人类主动操作的情况下,自动安全地操作机动车辆(如图1-7)。机器视觉的快速发展促进了自动驾驶技术的成熟,使无人驾驶在未来成为可能。

图1-7 自动驾驶汽车应用场景

自动驾驶技术链比较长,主要包含感知阶段、规划阶段和控制阶段三个部分。机器视觉技术主要应用在无人驾驶的感知阶段,其基本原理可概括如下。

1)使用机器视觉获取场景中的深度信息,以帮助进行后续的图像语义理解,在自动驾驶中帮助探索可行驶区域和目标障碍物。

2)通过视频预估每一个像素的运动方向和运动速度。

3)对物体进行检测与追踪。在无人驾驶中,检测与追踪的目标主要是各种车辆、行人、非机动车。

4)对于整个场景的理解。最重要的有两点,第一是道路线检测,其次是在道路线检测下更进一步,即将场景中的每一个像素都打成标签,这也称为场景分割或场景解析。

5)同步地图构建和定位技术。