参考文献
[1] 张文亮,丘明,来小康. 储能技术在电力系统中的应用 [J]. 电网技术,2008,32(7):1-9.
[2] Dunn B,Kamath H,Tarascon J-M. Electrical energy storage for the grid:a battery of choices [J]. Science,2011,334(6058):928-935.
[3] Thackeray M M,Wolverton C,Isaacs E D. Electrical energy storage for transportation—approaching the limits of,and going beyond,lithium-ion batteries [J]. Energy & Environmental Science,2012,5(7):7854-7863.
[4] Veneri O,Capasso C,Patalano S. Experimental study on the performance of a ZEBRA battery based propulsion system for urban commercial vehicles [J]. Applied Energy,2017,185:2005-2018.
[5] Yang Z G,Zhang J L,Kintner-Meyer M C W,et al. Electrochemical Energy Storage for Green Grid [J]. Chem Rev,2011,111(5):3577.
[6] Taylor S. Abundance of chemical elements in the continental crust:a new table [J]. Geochimica et Cosmochimica Acta,1964,28(8):1273-1285.
[7] Kummer J T,Neill W. Battery having a molten alkali metal anode and a molten sulfur cathode:US58260866A [P] . 1968-11-26.
[8] Bito A. Overview of the sodium-sulfur battery for the IEEE stationary battery committee [C]. Proceedings of the Power Engineering Society General Meeting,2005 IEEE.
[9] Dufo-L Pez R,Bernal-Agust N J L,Dom Nguez-Navarro J A. Generation management using batteries in wind farms:economical and technical analysis for spain [J]. Energy Policy,2009,37(1):126-39.
[10] Oshima T,Kajita M,Okuno A. Development of Sodium-Sulfur Batteries [J]. International Journal of Applied Ceramic Technology,2004,1(3):269-76.
[11] Wen Z,Hu Y,Wu X,et al. Main Challenges for High Performance NAS Battery:Materials and Interfaces [J]. Advanced Functional Materials,2013,23(8):1005-18.
[12] Sudworth J,Hames M,Storey M,et al. An analysis and laboratory assessment of two sodium sulphur cell designs [J]. Power Sources,1973,4:1-20.
[13] Liu C,Li F,Ma L P,et al. Advanced materials for energy storage [J]. Adv Mater,2010,22(8):28-62.
[14] 温兆银. 钠硫电池及其储能应用 [J]. 上海节能,2007(2):7-10.
[15] 温兆银,陈昆刚. Naβ″-Al2O3与水的作用 [J]. 无机材料学报,1996,11(2):297-302.
[16] Hong Y,Hong D,Peng Y,et al. The fabrication and properties of polycrystalline Caβ″-Al2O3 tube [J]. Solid State Ionics,1987,25(4):301-305.
[17] Le Cars Y,Thery J,Collonques R. Domaine d'existence et stabilité des alumines β et β″dans le systéme Al2O3-Na2O. Étude par rayons X et microscopie électronique [J]. Rev Hautes Temp Refract,1972,9(1):153-60.
[18] Boilot J,Thery J. Influence de l'addition d'ions etrangers sur la stabilite relative et la conductivite electrique des phases de type alumine β et β″[J]. Materials Research Bulletin,1976,11(4):407-413.
[19] Virkar A V,Miller G R,Gordon R S. Resistivity-microstructure relations in lithia-stabilized polycrystalline β″-alumina[J]. Journal of the American Ceramic Society,1978,61(5-6):250-252.
[20] Tofield B. Structure of lithium-sodium beta-alumina by powder neutron diffraction [J]. Nature,1979,278:438-439.
[21] Bugden W,Duncan J. Effect of dopants on beta-alumina resistivity and reliability[C]// Proceedings of the Science of Ceramics,9,Proc 9 th Int Conf held Noordwijkerhout.Netherlands,1977.
[22] Hooper A. A study of the electrical properties of single-crystal and polycrystalline β-alumina using complex plane analysis [J]. Journal of Physics D:Applied Physics,1977,10(11):1487.
[23] Itoh K,Kondo K-I,Sawoka A,et al. Effect of pressure on the ionic conduction of Na-β-alumina[J]. Japanese Journal of Applied Physics,1975,14(8):1237.
[24] Buechele A,De Jonghe L. Microstructure and ionic resistivity of calcium-containing sodium beta alumina [J]. Am Ceram Soc Bull,1979,58(9):861-864.
[25] Brown G,Schwinn D,Bates J,et al. Structures of four fast-ion conductors by single-crystal neutron-diffraction analysis:Zn-stabilized Naβ″-Alumina and Mg-stabilized Na-,K-,and Agβ″-aluminas [J]. Solid State Ionics,1981,5:147-150.
[26] Hsieh M,Jonghe L. Silicate-containing sodium beta-alumina solid electrolytes[J]. Journal of the American Ceramic Society,1978,61(5-6):186-191.
[27] Breiter M,Farrington G,Roth W L,et al. Production of hydronium beta alumina from sodium beta alumina and characterization of conversion products [J]. Materials Research Bulletin,1977,12(9):895-906.
[28] Tan S,May G. The production of beta-alumina by a zone sintering process [J]. Sci Ceram,1977,9:103.
[29] Briant J,Farrington G. Ionic conductivity in Na+,K+,and Ag+β″-alumina [J]. Journal of Solid State Chemistry,1980,33(3):385-390.
[30] Jorgensen J,Rotella F,Roth W. Conduction plane and structure of Li-stabilized Na+β″-alumina:a powder neutron diffraction study [J]. Solid State Ionics,1981,5:143-146.
[31] Wen Z,Gu Z,Xu X,et al. Research activities in Shanghai institute of ceramics,Chinese academy of sciences on the solid electrolytes for sodium sulfur batteries [J]. J Power Sources,2008,184(2):641-645.
[32] 陈昆刚,徐孝和. 部分合成法制备Na-β″-Al2O3 陶瓷[J]. 无机材料学报,1997,12(5):725-732.
[33] 温兆银,林祖镶. ZrO2 在β'-Al2O3复合陶瓷中的作用[J]. 复合材料学报,1996,13(3):38-42.
[34] May G. The development of beta-alumina for use in electrochemical cells:A survey [J]. J Power Sources,1978,3(1):1-22.
[35] Hu Y,Wen Z,Wu X,et al. Low-cost shape-control synthesis of porous carbon film on β″-alumina ceramics for Na-based battery application [J]. J Power Sources,2012,219:1-8.
[36] Hu Y,Wen Z,Wu X,et al. Nickel nanowire network coating to alleviate interfacial polarization for Na-beta battery applications [J]. Journal of Power Sources,2013,240:786-795.
[37] Dunn B,Farrington G. Recent developments in β″alumina [J]. Solid State Ionics,1986,18:31-39.
[38] Zhang G,Wen Z,Yang J,et al. Improvement of the sealing performance for sodium anode based battery by interface optimization of alpha-Al2O3/glass sealant [J]. Solid State Ionics,2014,263:140-145.
[39] Roberts B P. Sodium-Sulfur(NaS)batteries for utility energy storage applications [C]//Proceedings of the Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century.IEEE,2008.
[40] Wen Z. Study on energy storage technology of sodium sulfur battery and it's application in power system[C]//2006 International Conference on Power System Technology,2006.
[41] 曹佳弟. 电动汽车用高功率钠硫电池的新发展 [J]. 电源技术,1996,20(6):261-266.
[42] Doughty D H,Butler P C,Akhil A A,et al. Batteries for large-scale stationary electrical energy storage [J]. The Electrochemical Society Interface,2010,19(3):49-53.
[43] Weber N,Kummer J T. Sodium-sulfur secondary battery[C]. Proceedings of the Annual Power Sources Conference,1967.
[44] Kummer J T,Weber N,0148-7191 [R]:SAE Technical Paper,1967.
[45] Wen Z,Cao J,Gu Z,et al. Research on sodium sulfur battery for energy storage [J]. Solid State Ionics,2008,179(27):1697-1701.
[46] Lu X,Kirby B W,Xu W,et al. Advanced intermediate-temperature Na-S battery [J]. Energy Environ Sci,2013,6(1):299-306.
[47] Ryu H,Kim T,Kim K,et al. Discharge reaction mechanism of room-temperature sodium-sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte [J]. J Power Sources,2011,196(11):5186-5190.
[48] Kim I,Park J-Y,Kim C H,et al. A room temperature Na/S battery using a β″ alumina solid electrolyte separator,tetraethylene glycol dimethyl ether electrolyte,and a S/C composite cathode [J]. J Power Sources,2016,301:332-337.
[49] Kohl M,Borrmann F,Althues H,et al. Hard carbon anodes and novel electrolytes for long-cycle-life room temperature sodium-sulfur full cell batteries [J]. Adv Energy Mater,2016,6(6):1502185.
[50] Kim J-S,Ahn H-J,Kim I-P,et al. The short-term cycling properties of Na/PVdF/S battery at ambient temperature [J]. J Solid State Electrochem,2008,12(7-8):861-866.
[51] Wang Y-X,Yang J,Lai W,et al. Achieving high performance of room-temperature sodium-sulfur batteries with S@interconnected mesoporous carbon hollow nanospheres [J]. Journal of the American Chemical Society,2016,138(51):16576.
[52] Hueso K B,Armand M,Rojo T. High temperature sodium batteries:status,challenges and future trends [J]. Energy & Environmental Science,2013,6(3):734-749.
[53] Lu X,Xia G,Lemmon J P,et al. Advanced materials for sodium-beta alumina batteries:status,challenges and perspectives [J]. Journal of Power Sources,2010,195(9):2431-2442.
[54] Ha S,Kim J-K,Choi A,et al. Sodium-metal halide and sodium-air batteries [J]. ChemPhysChem,2014,15(10):1971-1982.
[55] Dustmann C-H. Advances in ZEBRA batteries [J]. Journal of Power Sources,2004,127(1-2):85-92.
[56] Bones R J,Teagle D A,Brooker S D,et al. Development of a Ni,NiCl2 positive electrode for a liquid sodium(ZEBRA)battery cell [J]. Journal of the Electrochemical Society,1989,136(5):1274-1277.
[57] Coetzer J. A new high energy density battery system [J]. Journal of Power Sources,1986,18(4):377-380.
[58] Moseley P T,Bones R J,Teagle D A,et al. Stability of beta alumina electrolyte in sodium/FeCl2(ZEBRA)cells [J]. Journal of the Electrochemical Society,1989,136(5):1361-1368.
[59] Li G,Lu X,Kim J Y,et al. An advanced Na-FeCl2 ZEBRA battery for stationary energy storage application [J]. Advanced Energy Materials,2015,5(12):1500357-1500363.
[60] Lu X,Li G,Kim J Y,et al. A novel low-cost sodium-zinc chloride battery [J]. Energy & Environmental Science,2013,6(6):1837-1843.
[61] Robelin C,Chartrand P,Pelton A D. Thermodynamic evaluation and optimization of the(NaCl+KCl+AlCl3)system [J]. The Journal of Chemical Thermodynamics,2004,36(8):683-99.
[62] Sudworth J L. The sodium/nickel chloride(ZEBRA)battery [J]. Journal of Power Sources,2001,100(1-2):149-163.
[63] Hosseinifar M,Petric A. High temperature versus low temperature Zebra(Na/NiCl2)cell performance [J]. Journal of Power Sources,2012,206:402-408.
[64] Lu X C,Xia G G,Lemmon J P,et al. Advanced materials for sodium-beta alumina batteries:status,challenges and perspectives [J]. J Power Sources,2010,195(9):2431.
[65] Galloway R C,Haslam S. The ZEBRA electric vehicle battery:power and energy improvements [J]. Journal of Power Sources,1999,80(1-2):164-170.
[66] Ratnakumar B V,Surampudi S,Halpert G. Effects of sulfur additive on the performance of Na/NiCl2 cells [J]. Journal of Power Sources,1994,48(3):349-360.
[67] B HM H,Beyermann G. ZEBRA batteries,enhanced power by doping [J]. Journal of Power Sources,1999,84(2):270-274.
[68] Van Zyl A. Proceedings of the 10th International Conference on Solid State IonicsReview of the zebra battery system development [J]. Solid State Ionics,1996,86:883-889.
[69] Sudworth J L. Zebra Batteries [J]. J Power Sources,1994,51(1-2):105.
[70] Sudworth J,Galloway R. Secondary batteries-high temperature systems| sodium-nickel chloride [M]. Encyclopedia of Electrochemical Power Sources,2009:312-323
[71] Hu Y,Wen Z,Wu X,et al. Low-cost shape-control synthesis of porous carbon film on β″-alumina ceramics for Na-based battery application [J]. Journal of Power Sources,2012,219:1-8.
[72] Hu Y,Wen Z,Wu X. Porous iron oxide coating on β″-alumina ceramics for Na-based batteries [J]. Solid State Ionics,2014,262:133-137.
[73] Lu X,Li G,Kim J Y,et al. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage [J]. Nature Communications,2014,5:4578.
[74] Sudworth J L. Zebra batteries [J]. Journal of Power Sources,1994,51(1):105-114.
[75] Prakash J,Redey L,Vissers D R. Morphological considerations of the nickel chloride electrodes for zebra batteries [J]. Journal of Power Sources,1999,84(1):63-69.
[76] Zhu Y,Murali S,Stoller M D,et al. Carbon-based supercapacitors produced by activation of graphene [J]. Science,2011,332(6037):1537-1541.
[77] Kluiters E C,Schmal D,Ter Veen W R,et al. Testing of a sodium/nickel chloride(ZEBRA)battery for electric propulsion of ships and vehicles [J]. Journal of Power Sources,1999,80(1-2):261-264.
[78] Dustmann C-H. ZEBRA battery meets USABC goals [J]. Journal of Power Sources,1998,72(1):27-31.
[79] Prakash J,Redey L,Vissers D R. Electrochemical behavior of nonporous Ni/NiCl2 electrodes in chloroaluminate melts [J]. Journal of The Electrochemical Society,2000,147(2):502-507.
[80] Prakash J,Redey L,Vissers D R,et al. Effect of sodium iodide additive on the electrochemical performance of sodium/nickel chloride cells [J]. Journal of Applied Electrochemistry,2000,30(11):1229-1233.
[81] Lu X C,Li G S,Kim J Y,et al. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage [J]. Nat Commun,2014,5:5578.
[82] Lu X,Lemmon J P,Sprenkle V,et al. Sodium-beta alumina batteries:status and challenges [J]. JOM,2010,62(9):31-36.
[83] Bowden M E,Alvine K J,Fulton J L,et al. X-ray absorption measurements on nickel cathode of sodium-beta alumina batteries:Fe-Ni-Cl chemical associations [J]. Journal of Power Sources,2014,247:517-526.
[84] Kim H,Jeong G,Kim Y-U,et al. Metallic anodes for next generation secondary batteries [J]. Chemical Society Reviews,2013,42(23):9011-9034.
[85] Luntz A C,Mccloskey B D. Nonaqueous Li-air batteries:a status report [J]. Chemical Reviews,2014,114(23),11721-11750.
[86] Cui Y,Wen Z,Liu Y. A free-standing-type design for cathodes of rechargeable Li-O2 batteries [J]. Energy & Environmental Science,2011,4(11):4727-4734.
[87] Cui Y,Wen Z,Liang X,et al. A tubular polypyrrole based air electrode with improved O2 diffusivity for Li-O2 batteries [J]. Energy & Environmental Science,2012,5(7):7893-7897.
[88] Palomares V,Casas-Cabanas M,Castillo-Martinez E,et al. Update on Na-based battery materials. A growing research path [J]. Energy & Environmental Science,2013,6(8):2312-2337.
[89] Ren X,Wu Y. A low-overpotential potassium-oxygen battery based on potassium superoxide [J]. J Am Chem Soc,2013,135(8):2923-2926.
[90] Ren Z-W,Zhou D-B,Tu S-Q. Synthesis of cathode materials for Al-air cell and its electric performance [J]. Chinese Journal of Power Sources,2007,31(9):706.
[91] Li Y,Dai H. Recent advances in zinc-air batteries [J]. Chemical Society Reviews,2014,43(15):5257-5275.
[92] Milushevea Y,Boukoureshtlieva R,Hristov S,et al. Environmentally-clean Mg-air electrochemical power sources [J]. Bulgarian Chemical Communications,2011,43(1):42-47.
[93] 张三佩,温兆银,靳俊,等. 二次钠-空气电池的研究进展[J]. 电化学,2015,21(5):425-432.
[94] Zu C-X,Li H. Thermodynamic analysis on energy densities of batteries [J]. Energy & Environmental Science,2011,4(8):2614-2624.
[95] Das S K,Lau S,Archer L. Sodium-oxygen battery:a new class of metal-air battery [J]. Journal of Materials Chemistry A,2014,2(32):12623-12629.
[96] Peled E,Golodnitsky D,Mazor H,et al. Parameter analysis of a practical lithium-and sodium-air electric vehicle battery [J]. J Power Sources,2011,196(16):6835-6840.
[97] Zhang S,Wen Z,Rui K,et al. Graphene nanosheets loaded with Pt nanoparticles with enhanced electrochemical performance for sodium-oxygen batteries [J]. Journal of Materials Chemistry A,2015,3(6):2568-2571.
[98] Hartmann P,Bender C L,Vracar M,et al. A rechargeable room-temperature sodium superoxide(NaO2)battery [J]. Nat Mater,2013,12(3):228-232.
[99] Kim J,Lim H-D,Gwon H,et al. Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes [J]. Physical Chemistry Chemical Physics,2013,15(10):3623-3629.
[100] Zhang S,Wen Z,Jin J,et al. Controlling uniform deposition of discharge products at the nanoscale for rechargeable Na-O2 batteries [J]. Journal of Materials Chemistry A,2016,4(19):7238-7244.
[101] Kwak W-J,Chen Z,Yoon C S,et al. Nanoconfinement of low-conductivity products in rechargeable sodium-air batteries [J]. Nano Energy,2015,12:123-130.
[102] Yin W-W,Yue J-L,Cao M-H,et al. Dual catalytic behavior of a soluble ferrocene as an electrocatalyst and in the electrochemistry for Na-air batteries [J]. Journal of Materials Chemistry A,2015,3(37):19027-19032.
[103] Palomares V,Serras P,Villaluenga I,et al. Na-ion batteries,recent advances and present challenges to become low cost energy storage systems [J]. Energy & Environmental Science,2012,5(3):5884-5901.
[104] Luo W,Shen F,Bommier C,et al. Na-ion battery anodes:materials and electrochemistry [J]. Accounts of Chemical Research,2016,49(2):231-240.
[105] Kim Y,Ha K,Oh S,et al.High capacity anode materials for sodium ion batteries [J]. Chemistry of European Journal,2014,20:19980-11992.
[106] Doeff M M,Ma Y,Visco S J,et al.Electrochemical insertion of sodium into carbon [J].Journal of the Electrochemical Society,1993,140(12):L169-L170.
[107] Alcntara R,Lavela P,Ortiz G F,et al. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries [J]. Electrochemical and Solid-State Letters,2005,8(4):A222-A225.
[108] Wang H G,Wu Z,Meng F L,et al. Nitrogen-doped porous carbon nanosheets as low-cost,high-performance anode material for sodium-ion batteries [J]. ChemSusChem,2013,6(1):56-60.
[109] Yan Y,Yin Y X,Guo Y G,et al. A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries [J]. Advanced Energy Materials,2014,4(8):1079-1098.
[110] Xu J,Wang M,Wickramaratne N P,et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams [J]. Advanced Materials,2015,27(12):2042-2048.
[111] Wu L,Hu X,Qian J,et al. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries [J]. Energy & Environmental Science,2014,7(1):323-328.
[112] Baggetto L,Allcorn E,Unocic R R,et al. Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries [J]. Journal of Materials Chemistry A,2013,1(37):11163-11169.
[113] Slater M D,Kim D,Lee E,et al. Sodium-ion batteries [J]. Advanced Functional Materials,2013,23(8):947-958.
[114] Ellis L D,Hatahard T D,Obrovac M N.Reversible insertin of sodium in tin [J].Journal of the Electrochemical Society,2012,159:A1801-A1805.
[115] Zhu H,Jia Z,Chen Y,et al. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir [J]. Nano Letters,2013,13(7):3093-3100.
[116] Liu Y,Xu Y,Zhu Y,et al.Tin coated viral nanoforests as sodium ion battery anodes [J].ACS Nano,2013,7:3627-3634.
[117] Thorne J,Dunlap R,Obrovac M.(Cu6Sn5)1-xCx active/inactive nanocomposite negative electrodes for Na-ion batteries [J]. Electrochimica Acta,2013,112:133-137.
[118] Baggettc L,Keum J K,Browning J F,et al. Germanium as negative electrode material for sodium-ion batteries [J]. Electrochemistry Communications,2013,34:41-44.
[119] Zhang C,Mahmood N,Yin H,et al. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries [J]. Advanced Materials,2013,25(35):4932-4937.
[120] Kim Y,Park Y,ChoI A,et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries [J]. Advanced Materials,2013,25(22):3045-3049.
[121] Qian J,Wu X,Cao Y,et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries [J]. Angewandte Chemie,2013,125(17):4731-4734.
[122] Fullenwarth J,Darwiche A,Soares A,et al. NiP3:a promising negative electrode for Li-and Na-ion batteries [J].Journal of Materials Chemistry A,2014,2(7):2050-2059.
[123] Qian J,Xiong Y,Cao Y,et al. Synergistic Na-storage reactions in Sn4P3 as a high-capacity,cycle-stable anode of Na-ion batteries [J]. Nano Letters,2014,14(4):1865-1869.
[124] Xiong H,Slater M D,Balasubramanian M,et al. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries [J]. The Journal of Physical Chemistry Letters,2011,2(20):2560-2565.
[125] Senguttuvan P,Rousse G,Seznec V,et al.Na2Ti3O7:lowest voltage ever reported oxide insertion electrode for sodium ion batteries [J]. Chemistry of Materials,2011,23(18):4109-4119.
[126] Rudola A,Saravanan K,Devaraj S,et al. Na2Ti6O13:a potential anode for grid-storage sodium-ion batteries [J]. Chemical Communications,2013,49(67):7451-7453.
[127] Naeyaert P J,Avdeev M,Sharma N,et al. Synthetic,structural,and electrochemical study of monoclinic Na4Ti5O12 as a sodium-ion battery anode material [J]. Chemistry of Materials,2014,26(24):7067-7072.
[128] Sun Y,Zhao L,Pan H,et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries [J]. Nature Communications,2013,4:1870.
[129] Wang Y,Yu X,Xu S,et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries [J]. Nature communications,2013,4(4):2365.
[130] Zhou K,Hong Z,Xie C,et al. Mesoporous NiCo2O4 nanosheets with enhance sodium ion storage properties [J]. Journal of Alloys and Compounds,2015,651:24-31.
[131] Yuan S,Huang X I,Ma D I,et al. Engraving copper foil to give large-scale binder-free porous CuO arrays for high performance sodium ion battery anode [J].Advanced Materials,2014,26:2273-2279.
[132] Rahman M M,Glushenkov A M,Ramireddy T,et al. Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries [J]. Chemical Communications,2014,50(39):5057-5060.
[133] Jian Z,Zhao B,Liu P,et al. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries [J]. Chemical Communications,2014,50(10):1215-1217.
[134] Jiang Y,Hu M,Zhang D,et al. Transition metal oxides for high performance sodium ion battery anodes [J]. Nano Energy,2014,5:60-65.
[135] Gu M,Kushima A,Shao Y,et al. Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries [J]. Nano Letters,2013,13(11):5203-5213.
[136] Wang Y-X,Lim Y-G,Park M-S,et al. Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances [J]. Journal of Materials Chemistry A,2014,2(2):529-534.
[137] Su D,Xie X,Wang G. Hierarchical mesoporous SnO microspheres as high capacity anode materials for sodium-ion batteries [J]. Chemistry-A European Journal,2014,20(11):3192-3198.
[138] Sun Q,Ren Q-Q,Li H,et al. High capacity Sb2O4 thin film electrodes for rechargeable sodium battery [J]. Electrochemistry Communications,2011,13(12):1462-1465.
[139] Hu Z,Zhu Z,Cheng F,et al. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries [J]. Energy & Environmental Science,2015,8(4):1309-1316.
[140] Ryu H-S,Kim J-S,Park J,et al. Degradation mechanism of room temperature Na/Ni3S2 cells using Ni3S2 electrodes prepared by mechanical alloying [J]. Journal of Power Sources,2013,244:764-770.
[141] Hu Z,Wang L,Zhang K,et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries [J]. Angewandte Chemie,2014 ,53(47):12794-12801.
[142] Denis Y,Prikhodchenko P V,Mason C W,et al. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries [J]. Nat Commun,2013,4(4):2922.
[143] Yabuuchi N,Kubota K,Dahbi M,et al.Research development on sodium-ion batteries [J].Chem Rev,2014,114:11636-11682.
[144] Ding J J,Zhou Y N,Sun Q,et al.Electrochemical properties of P2 phase Na0.74CoO2 compunds as cathode material [J].Electrochem Acta,2013,87:388-393.
[145] Ding J-J,Zhou Y-N,Sun Q,et al. Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries [J]. Electrochem Commun,2012,22:85-93.
[146] Yabuuchi N,Kajiyama M,Iwatate J,et al. P2-type Nax [Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries [J]. Nat Mater,2012,11(6):512-517.
[147] Tevar A,Whitacre J. Relating synthesis conditions and electrochemical performance for the sodium intercalation compound Na4Mn9O18 in aqueous electrolyte [J]. J Electrochem Soc,2010,157(7):A870-A875.
[148] Oh S-M,Myung S-T,Hassoun J,et al. Reversible NaFePO4 electrode for sodium secondary batteries [J]. Electrochem Commun,2012,22:149.
[149] Lu Y,Zhang S,Li Y,et al. Preparation and characterization of carbon-coated NaVPO4 F as cathode material for rechargeable sodium-ion batteries [J]. J Power Sources,2014,247:770-776.
[150] Kawabe Y,Yabuuchi N,Kajiyama M,et al. Synthesis and electrode performance of carbon coated Na2FePO4 F for rechargeable Na batteries [J]. Electrochem Commun,2011,13(11):1225-1232.
[151] Zheng Y,Zhang P,Wu S,et al. First-principles investigations on the Na2MnPO4F as a cathode material for Na-ion batteries [J]. J Electrochem Soc,2013,160(6):A927-A932.
[152] Kim H,Park I,Lee S,et al. Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P2O7)in a Na rechargeable battery [J]. Chem Mater,2013,25(18):3614-3622.
[153] Nose M,Nakayama H,Nobuhara K,et al. Na4Co3(PO4)2P2O7:A novel storage material for sodium-ion batteries [J]. J Power Sources,2013,234:175-183.
[154] Huang Q,Hwu S-J. Synthesis and characterization of three new layered phosphates,Na2MnP2O7,NaCsMnP2O7,and NaCsMn0.35Cu0.65P2O7 [J]. Inorganic Chemistry,1998,37(22):5869-5874.
[155] Delmas C,Cherkaou F,Nadiri A,et al. A nasicon-type phase as intercalation electrode:NaTi2(PO4)3 [J]. Materials research bulletin,1987,22(5):631-639.
[156] Jian Z,Han W,Lu X,et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries [J]. Adv Energy Mater,,2013,3(2):156-160.
[157] Wang X,Niu C,Meng J,et al. Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability [J]. Adv Energy Mater,2015,5(17).
[158] Kim S W,Seo D H,Ma X,et al. Electrode materials for rechargeable sodium-ion batteries:potential alternatives to current lithium-ion batteries [J]. Adv Energy Mater,,2012,2(7):710-721.
[159] Ponrouch A,Monti D,Boschin A,et al. Non-aqueous electrolytes for sodium-ion batteries [J]. J Mater Chem A,2015,3(1):22-42.
[160] 杨汉西,钱江锋. 水溶液钠离子电池及其关键材料的研究进展 [J]. 无机材料学报,2013,28(11):1165-1171.
[161] Whitacre J,Wiley T,Shanbhag S,et al. An aqueous electrolyte,sodium ion functional,large format energy storage device for stationary applications [J]. J Power Sources,2012,213:255-264.
[162] Wu X,Cao Y,Ai X,et al. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry [J]. Electrochem Commun,2013,31:145-148.
[163] Wu X Y,Sun M Y,Shen Y F,et al. Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry [J]. ChemSusChem,2014,7(2):407-411.