参考文献
[1] 王德宇.锂离子电池磷酸盐正极材料的制备与改性研究.北京:中国科学院物理研究所,2005.
[2] Vincent C A.Lithium batteries:a 50-year perspective,1959—2009.Solid State Ionics,2000,134(1-2):159-167.
[3] Watanabe N,Fukuda M.Primary cell for electric batteries.Google Patents,1970.
[4] Peled E.The Electrochemical-Behavior of Alkali and Alkaline-Earth Metals in Non-Aqueous Battery Systems——the Solid Electrolyte Interphase Model.Journal of the Electrochemical Society,1979,126(12):2047-2051.
[5] Peled E.Lithium Batteries.London:Academic Press,1983.
[6] Trumbore F A,Broadhead J,Putvinski T M.Boston:The Electrochemical Society Meeting,1973.
[7] Broadhead J,Butherus A.Rechargable nonaqueous battery.Google Patents,1974.
[8] Murphy D W,Trumbore F A.Chemistry of TiS3 and NbSe3 Cathodes.Journal of the Electrochemical Society,1976,123(7):960-964.
[9] Whittingham M S.Electrical Energy-Storage and Intercalation Chemistry.Science,1976,192(4244):1126-1127.
[10] Whittingham M S,Chianelli R R.Layered Compounds and Intercalation Chemistry:an Example of Chemistry and Diffusion in Solids.Journal of Chemical Education,1980,57(8):569-574.
[11] Gamble F R,Thompson A H.Superconductivity in Layer Compounds Intercalated with Paramagnetic Molecules.Solid State Communications,1978,27(4):379-382.
[12] Whittingham M S.Role of Ternary Phases in Cathode Reactions.Journal of the Electrochemical Society,1976,123(3):315-320.
[13] Delmas C,et al.The LixV2O5 System:an Overview of the Structure Modifications Induced by the Lithium Intercalation.Solid State Ionics,1994,69(3-4):257-264.
[14] Rao B M L,Francis R W,Christopher H A.Lithium-Aluminum Electrode.Journal of the Electrochemical Society,1977,124(10):1490-1492.
[15] Fenton D E,Parker J M,Wright P V.Complexes of Alkali-Metal Ions with Poly(Ethylene Oxide).Polymer,1973,14(11):589.
[16] Armand M,Chabagno J,Duclot M.Extended Abstracts,in Second International Conference on Solid Electrolytes.Vashishta P,Mundy J,Shenoy G,Editors.St Andrews,1978.
[17] Murphy D W,Broadhead J,Steele B C H.Materials for Advanced Batteries.Plenum Press,1980.
[18] Lazzari M,Scrosati B.Cyclable Lithium Organic Electrolyte Cell Based on 2 Intercalation Electrodes.Journal of the Electrochemical Society,1980,127(3):773-774.
[19] Dipietro B,Patriarca M,Scrosati B.On the Use of Rocking Chair Configurations for Cyclable Lithium Organic Electrolyte Batteries.Journal of Power Sources,1982,8(2-3):289-299.
[20] Gabano J P,et al.Proceedings of the Symposium on Primary and Secondary Ambient Temperature Lithium Batteries.Electrochemical Society,1988.
[21] density.,K.M.P.C.J.P.J.W.J.B.G.L.x.-A.n.c.m.f.b.o.h.e.,mizushima1980.pdf.
[22] Goodenough J B,Mizuchima K.Electrochemical cell with new fast ion conductors.Google Patents,1981.
[23] Thackeray M M,Goodenough J B.Solid state cell wherein an anode,solid electrolyte and cathode each comprise a cubic-close-packed framework structure.Google Patents,1985.
[24] 吴晓东.纳米储能材料——锂离子电池用纳米负极材料及其界面研究.北京:中国科学院物理研究所,2004.
[25] Fong R,Vonsacken U,Dahn J R.Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical-Cells.Journal of the Electrochemical Society,1990,137(7):2009-2013.
[26] Yamahira TCOSEI,Kato HCOSEI,Anzai MCOSEI.Non-aqueous electrolyte secondary cell.Google Patents,1993.
[27] Shimotake H.Progress in Batteries and Solar Cells.JEC Press,1990.
[28] Aurbach D Z A, Ein-Eli Y,et al.Recent studies on the correlation between surface chemistry,morphology,three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems.Journal of Power Sources,1997,68:91-98.
[29] Zu C X,Li H.Thermodynamic analysis on energy densities of batteries.Energy & Environmental Science,2011,4(8):2614-2624.
[30] 马璨,吕迎春,李泓,锂离子电池基础科学问题(Ⅷ)——正极材料.储能科学与技术,2014,3(1):53.
[31] Cho J,et al.Effect of P2O5 and AlPO4 coating on LiCoO2 cathode material.Chemistry of materials,2003,15(16):3190-3193.
[32] Cho J,Kim Y J,Park B.Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell.Chemistry of materials,2000,12(12):3788-3791.
[33] Liu L,et al.Al2O3-coated LiCoO2 as cathode material for lithium ion batteries.Solid State Ionics,2002,152-153:341-346.
[34] Wang Z,et al.Electrochemical evaluation and structural characterization of commercial LiCoO2 surfaces modified with MgO for lithium-ion batteries.Journal of The Electrochemical Society,2002,149(4):A466-A471.
[35] Stoyanova R,Zhecheva E,Zarkova L.Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1-yO2 solid solutions.Solid State Ionics,1994,73(3):233-240.
[36] Waki S,et al.High-Speed voltammetry of Mn-doped LiCoO2 using a microelectrode technique.Journal of Solid State Electrochemistry,2000,4(4):205-209.
[37] Ceder G,et al.Identification of cathode materials for lithium batteries guided by first-principles calculations.Nature,1998,392(6677):694-696.
[38] Goodenough J B.Rechargeable batteries:challenges old and new.Journal of Solid State Electrochemistry,2012,16(6):2019-2029.
[39] Gao Y,Yakovleva M V,Ebner W B.Novel LiNi1-xTix/2Mgx/2O2 Compounds as Cathode Materials for Safer Lithium-Ion Batteries.Electrochemical and Solid-State Letters,1998,1(3):117-119.
[40] Eriksson T,Gustafsson T,Thomas J O.Surface Structure of LiMn2O4 Electrodes.Electrochemical and Solid-State Letters,2002,5(2):A35-A38.
[41] Du Pasquier A,et al.Mechanism for Limited 55℃ Storage Performance of Li1.05Mn1.95O4 Electrodes.Journal of The Electrochemical Society,1999,146(2):428-436.
[42] Kim J S,et al.The Electrochemical Stability of Spinel Electrodes Coated with ZrO2,Al2O3,and SiO2 from Colloidal Suspensions.Journal of The Electrochemical Society,2004,151(10):A1755-A1761.
[43] Park S B,et al.Improvement of capacity fading resistance of LiMn2O4 by amphoteric oxides.Journal of Power Sources,2008,180(1):597-601.
[44] Zhan C,et al.Mn(Ⅱ) deposition on anodes and its effects on capacity fade in spinel lithium manganate–carbon systems.Nat Commun,2013.
[45] Xia Y,Zhou Y,Yoshio M.Capacity Fading on Cycling of 4 V Li/LiMn2O4 Cells.Journal of The Electrochemical Society,1997,144(8):2593-2600.
[46] Lee J H,et al.Degradation mechanisms in doped spinels of LiM0.05Mn1.95O4(M=Li,B,Al,Co,and Ni) for Li secondary batteries.Journal of power sources,2000,89(1):7-14.
[47] Treuil N,et al.Relationship between chemical bonding nature and electrochemical property of LiMn2O4 spinel oxides with various particle sizes:“Electrochemical grafting” concept.The Journal of Physical Chemistry B,1999,103(12):2100-2106.
[48] Kosova N,et al.State of Manganese Atoms during the Mechanochemical Synthesis of LiMn2O4.Journal of Solid State Chemistry,1999,146(1):184-188.
[49] Gao Y,Richard M,Dahn J.Photoelectron spectroscopy studies of Li1+xMn2-xO4 for Li ion battery applications.Journal of applied physics,1996,80(7):4141-4152.
[50] Sun X,et al.Improved Elevated Temperature Cycling of LiMn2O4 Spinel Through the Use of a Composite LiF-Based Electrolyte.Electrochemical and Solid-State Letters,2001,4(11):A184-A186.
[51] Sun Y,et al.Improved Electrochemical Performances of Surface-Modified Spinel LiMn2O4 for Long Cycle Life Lithium-Ion Batteries.Journal of The Electrochemical Society,2003,150(10):A1294-A1298.
[52] Lee S,et al.Carbon-Coated Single-Crystal LiMn2O4 Nanoparticle Clusters as Cathode Material for High-Energy and High-Power Lithium-Ion Batteries.Angewandte Chemie International Edition,2012,51(35):8748-8752.
[53] Abruna H D,Goodenough J B,Buchanan M.ANYL 28-Summary overview of basic research needs for electrical energy storage.Abstracts of Papers of the American Chemical Society,2007:234.
[54] Prosini P P,et al.Determination of the chemical diffusion coefficient of lithium in LiFePO4.Solid State Ionics,2002,148(1-2):45-51.
[55] Ravet B G J B,Besner S,Simoneau M,Hovington P,Armand M.Improved iron based cathode materials.Honolulu,1999.
[56] Takahashi M,et al.Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries.Solid State Ionics,2002,148(3):283-289.
[57] Yamada A,Chung S C,Hinokuma K.Optimized LiFePO4 for lithium battery cathodes.Journal of the Electrochemical Society,2001,148(3):A224-A229.
[58] Chung S Y,Bloking J T,Chiang Y M.Electronically conductive phospho-olivines as lithium storage electrodes.Nature materials,2002,1(2):123-128.
[59] Herle P S,et al.Nano-network electronic conduction in iron and nickel olivine phosphates.Nature Materials,2004,3(3):147-152.
[60] Shaju K M,Rao G V S,Chowdari B V R.Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries.Electrochimica Acta,2002,48(2):145-151.
[61] MacNeil D D,Lu Z,Dahn J R.Structure and electrochemistry of Li NixCo1-2xMnxO2 (0≤x≤1/2).Journal of the Electrochemical Society,2002,149(10):A1332-A1336.
[62] Ohzuku T,Makimura Y.Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries.Chemistry Letters,2001,(7):642-643.
[63] Li D C,et al.Effect of synthesis method on the electrochemical performance of LiNi1/3Mn1/3Co1/3O2.Journal of Power Sources,2004,132(1-2):150-155.
[64] Sun Y,et al.Effect of Co Content on Rate Performance of LiMn0.5-xCo2xNi0.5-xO2 Cathode Materials for Lithium-Ion Batteries.Journal of The Electrochemical Society,2004.151(4):A504-A508.
[65] Kim J H,et al.Comparative study of LiNi0.5Mn1.5O4-delta and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures:Fd(3)over-barm and P4(3)32.Chemistry of Materials,2004,16(5):906-914.
[66] Santhanam R,Rambabu B.Research progress in high voltage spinel LiNi0.5Mn1.5O4 material.Journal of Power Sources,2010,195(17):5442-5451.
[67] Aklalouch M,et al.Chromium doping as a new approach to improve the cycling performance at high temperature of 5V LiNi0.5Mn1.5O4-based positive electrode.Journal of Power Sources,2008,185(1):501-511.
[68] Wang H,et al.High-rate performances of the Ru-doped spinel LiNi0.5Mn1.5O4:Effects of doping and particle size.The Journal of Physical Chemistry C,2011,115(13):6102-6110.
[69] 罗飞,等.锂离子电池基础科学问题(Ⅷ)——负极材料.储能科学与技术,2014,3(2):146.
[70] 郝润蓉,方锡义,钮少冲.无机化学丛书:第3卷.北京:科学出版社,I,1998:404-425.
[71] Ohzuku T,Ueda A,Yamamoto N.Zero-Strain Insertion Material of Li ~ O4 for Rechargeable Lithium Cells.Journal of The Electrochemical Society,1995,142(5):1431-1435.
[72] 钮因健,等.有色金属进展.长沙:中南大学出版社,1996-2005.
[73] Choi W C,Byun D,Lee J K.Electrochemical characteristics of silver-and nickel-coated synthetic graphite prepared by a gas suspension spray coating method for the anode of lithium secondary batteries.Electrochimica acta,2004,50(2):523-529.
[74] Lee H Y,et al.Effect of carbon coating on elevated temperature performance of graphite as lithium-ion battery anode material.Journal of Power Sources,2004,128(1):61-66.
[75] Tanaka H,et al.Improvement of the anode performance of graphite particles through surface modification in RF thermal plasma.Thin solid films,2004,457(1):209-216.
[76] Guoping W,et al.A modified graphite anode with high initial efficiency and excellent cycle life expectation.Solid State Ionics,2005,176(9):905-909.
[77] Lee J H,et al.Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance.Journal of Power Sources,2005,147(1):249-255.
[78] Yamauchi Y,et al.Gas desorption behavior of graphite anodes used for lithium ion secondary batteries.Carbon,2005,43(6):1334-1336.
[79] Zhao X,et al.In-Plane Vacancy-Enabled High-Power Si-Graphene Composite Electrode for Lithium-Ion Batteries.Advanced Energy Materials,2011,1(6):1079-1084.
[80] 王广驹.世界石墨生产,消费及国际贸易.中国非金属矿工业导刊,2006,1:61-65.
[81] G.H.Jonker,Proceedings 3rd Symp.On Reactivity of Solid,Madrid,Span.1956.
[82] Murphy D,et al.Ternary Lix TiO2 phases from insertion reactions.Solid State Ionics,1983,9:413-417.
[83] Ferg E,et al.Spinel Anodes for Lithium-Ion Batteries.Journal of The Electrochemical Society,1994,141(11):L147-L150.
[84] Robertson A,et al.New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries.Journal of Power Sources,1999,81:352-357.
[85] Peramunage D,Abraham K.Preparation of Micron-Sized Li4Ti5O12 and Its Electrochemistry in Polyacrylonitrile Electrolyte-Based Lithium Cells.Journal of the Electrochemical Society,1998,145(8):2609-2615.
[86] Julien C,Massot M,Zaghib K.Structural studies of Li4/3Me5/3O4(Me=Ti,Mn)electrode materials:local structure and electrochemical aspects.Journal of Power Sources,2004,136(1):72-79.
[87] Martha S K,et al.Li4Ti5O12/LiMnPO4 Lithium-Ion Battery Systems for Load Leveling Application.Journal of the Electrochemical Society,2011,158(7):A790-A797.
[88] Yoshio M,Tsumura T,Dimov N.Electrochemical behaviors of silicon based anode material.Journal of Power Sources,2005,146(1):10-14.
[89] Weydanz W J,Wohlfahrt-Mehrens M,Huggins R A.A room temperature study of the binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries.Journal of Power Sources,1999,81:237-242.
[90] Gao B,et al.Alloy formation in nanostructured silicon.Advanced Materials,2001,13(11):816.
[91] Li H,et al.A high capacity nano-Si composite anode material for lithium rechargeable batteries.Electrochemical and Solid State Letters,1999,2(11):547-549.
[92] Zhang X W,et al.Electrochemical performance of lithium ion battery,nano-silicon-based,disordered carbon composite anodes with different microstructures.Journal of Power Sources,2004,125(2):206-213.
[93] Chan C K,et al.Structural and electrochemical study of the reaction of lithium with silicon nanowires.Journal of Power Sources,2009,189(1):34-39.
[94] Cui L F,et al.Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes.Nano Letters,2009,9(1):491-495.
[95] McDowell M T,et al.Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes.Nano Letters,2011,11(9):4018-4025.
[96] Ryu I,et al.Size-dependent fracture of Si nanowire battery anodes.Journal of the Mechanics and Physics of Solids,2011,59(9):1717-1730.
[97] Xu W L,Vegunta S S S,Flake J C.Surface-modified silicon nanowire anodes for lithium-ion batteries.Journal of Power Sources,2011,196(20):8583-8589.
[98] Yue L,et al.Nano-silicon composites using poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) as elastic polymer matrix and carbon source for lithium-ion battery anode.Journal of Materials Chemistry,2012,22(3):1094-1099.
[99] Zang J L,Zhao Y P.Silicon nanowire reinforced by single-walled carbon nanotube and its applications to anti-pulverization electrode in lithium ion battery.Composites Part B-Engineering,2012,43(1):76-82.
[100] Yoshio M,et al.Carbon-coated Si as a lithium-ion battery anode material.Journal of the Electrochemical Society,2002,149(12):A1598-A1603.
[101] Qu J,et al.Self-aligned Cu-Si core-shell nanowire array as a high-performance anode for Li-ion batteries.Journal of Power Sources,2012,198:312-317.
[102] Jia H P,et al.Novel Three-Dimensional Mesoporous Silicon for High Power Lithium-Ion Battery Anode Material.Advanced Energy Materials,2011,1(6):1036-1039.
[103] Yao Y,et al.Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life.Nano Letters,2011,11(7):2949-2954.
[104] Fu K,et al.Aligned Carbon Nanotube-Silicon Sheets:A Novel Nano-architecture for Flexible Lithium Ion Battery Electrodes.Advanced Materials,2013,25(36):5109-5114.
[105] Min J H,et al.Self-organized Artificial SEI for Improving the Cycling Ability of Silicon-based Battery Anode Materials.Bulletin of the Korean Chemical Society,2013,34(4):1296-1299.
[106] Choi N S,et al.Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode.Journal of Power Sources,2006,161(2):1254-1259.
[107] Chakrapani V,et al.Quaternary Ammonium Ionic Liquid Electrolyte for a Silicon Nanowire-Based Lithium Ion Battery.Journal of Physical Chemistry C,2011,115(44):22048-22053.
[108] Etacheri V,et al.Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes.Langmuir,2011,28(1):965-976.
[109] BuddieáMullins C.High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries.Chemical Communications,2012,48(58):7268-7270.
[110] Profatilova I A,et al.Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate.Journal of Power Sources,2013,222:140-149.
[111] Leung K,et al.Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries.Journal of The Electrochemical Society,2014,161(3):A213-A221.
[112] Kovalenko I,et al.A major constituent of brown algae for use in high-capacity Li-ion batteries.Science,2011,334(6052):75-79.
[113] Ryou M H,et al.Mussel-Inspired Adhesive Binders for High-Performance Silicon Nanoparticle Anodes in Lithium-Ion Batteries.Advanced Materials,2012.
[114] Li J,Lewis R,Dahn J.Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries.Electrochemical and Solid-State Letters,2007,10(2):A17-A20.
[115] Bridel J S,et al.Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries†.Chemistry of Materials,2009,22(3):1229-1241.
[116] Mazouzi D,et al.Silicon composite electrode with high capacity and long cycle life.Electrochemical and Solid-State Letters,2009,12(11):A215-A218.
[117] Guo J C,Wang C S.A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery.Chemical Communications,2010,46(9):1428-1430.
[118] Liu W R,et al.Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder.Electrochemical and solid-state letters,2005,8(2):A100-A103.
[119] Park H K,Kong B S,Oh E S.Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries.Electrochemistry Communications,2011,13(10):1051-1053.
[120] Magasinski A,et al.Toward efficient binders for Li-ion battery Si-based anodes:Polyacrylic acid.ACS Applied Materials & Interfaces,2010,2(11):3004-3010.
[121] YunáJang B,SooáKim J,TaeáLee K.A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries.RSC Advances,2013,3(31):12625-12630.
[122] Han Z J,et al.Cross-Linked Poly (acrylic acid) with Polycarbodiimide as Advanced Binder for Si/Graphite Composite Negative Electrodes in Li-Ion Batteries.ECS Electrochemistry Letters,2013,2(2):A17-A20.
[123] Koo B,et al.A Highly Cross‐Linked Polymeric Binder for High‐Performance Silicon Negative Electrodes in Lithium Ion Batteries.Angewandte Chemie International Edition,2012,51(35):8762-8767.
[124] Yim C H,Abu-Lebdeh Y,Courtel F M.High Capacity Silicon/Graphite Composite as Anode for Lithium-Ion Batteries Using Low Content Amorphous Silicon and Compatible Binders.J Mater Chem A,2013.
[125] Erk C,et al.Toward Silicon Anodes for Next-Generation Lithium Ion Batteries:A Comparative Performance Study of Various Polymer Binders and Silicon Nanopowders.ACS Applied Materials & Interfaces,2013,5(15):7299-7307.
[126] Kim J S,et al.Effect of Polyimide Binder on Electrochemical Characteristics of Surface-Modified Silicon Anode for Lithium Ion Batteries.Journal of Power Sources,2013.
[127] Li J,et al.Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder.Journal of the Electrochemical Society,2008,155(3):A234-A238.
[128] Kim Y L,Sun Y K,Lee S M.Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology.Electrochimica Acta,2008,53(13):4500-4504.
[129] Guo J C,Sun A,Wang C S.A porous silicon-carbon anode with high overall capacity on carbon fiber current collector.Electrochemistry Communications,2010,12(7):981-984.
[130] Choi J Y,et al.Silicon Nanofibrils on a Flexible Current Collector for Bendable Lithium-Ion Battery Anodes.Advanced Functional Materials,2013,23(17):2108-2114.
[131] Hang T,et al.Silicon composite thick film electrodeposited on a nickel micro-nanocones hierarchical structured current collector for lithium batteries.Journal of Power Sources,2013,222:503-509.
[132] Luais E,et al.Thin and flexible silicon anode based on integrated macroporous silicon film onto electrodeposited copper current collector.Journal of Power Sources,2013,242:166-170.
[133] Tang X X,et al.Preparation of current collector with blind holes and enhanced cycle performance of silicon-based anode.Transactions of Nonferrous Metals Society of China,2013,23(6):1723-1727.
[134] Kim H,et al.Three‐Dimensional Porous Silicon Particles for Use in High‐Performance Lithium Secondary Batteries.Angewandte Chemie,2008,120(52):10305-10308.
[135] Bang B M,et al.Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching.Energy & Environmental Science,2011,4(12):5013-5019.
[136] Kasavajjula U,Wang C,Appleby A J.Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells.Journal of Power Sources,2007,163(2):1003-1039.
[137] Magasinski A,et al.High-performance lithium-ion anodes using a hierarchical bottom-up approach.Nature materials,2010,9(4):353-358.
[138] Notten P H L,et al.3-D integrated all-solid-state rechargeable batteries.Advanced Materials,2007,19(24):4564-4567.
[139] Baggetto L,et al.On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries.Journal of Power Sources,2009,189(1):402-410.
[140] Liu G,et al.Polymers with tailored electronic structure for high capacity lithium battery electrodes.Advanced Materials,2011,23(40):4679-4683.
[141] Chan C K,et al.High-performance lithium battery anodes using silicon nanowires.Nature Nanotechnology,2007,3(1):31-35.
[142] 刘亚利,吴娇扬,李泓,锂离子电池基础科学问题(Ⅸ)——非水液体电解质材料.储能科学与技术,2014,3(3):262.
[143] Fry A J.Synthetic Organic Electrochemistry,1989.
[144] Xu K.Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.Chemical Reviews,2004,104(10):4303-4417.
[145] Aurbach D.Nonaqueous Electrochemistry,1999.
[146] 郑洪河.锂离子电池电解质.北京:化学工业出版社,2006.
[147] Li L F,et al.New electrolytes for lithium ion batteries using LiF salt and boron based anion receptors.Journal of Power Sources,2008,184(2):517-521.
[148] Xie B,et al.New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries.Electrochemistry Communications,2008,10(8):1195-1197.
[149] Linden D.Handbook of Batteries,1995.
[150] Abe K,et al.Functional electrolytes:Novel type additives for cathode materials,providing high cycleability performance.Journal of Power Sources,2006,153(2):328-335.
[151] Lee Y S,et al.Effect of an organic additive on the cycling performance and thermal stability of lithium-ion cells assembled with carbon anode and LiNi1/3Co1/3Mn1/3O2 cathode.Journal of Power Sources,2011,196(16):6997-7001.
[152] Lee K S,et al.Improvement of high voltage cycling performance and thermal stability of lithium–ion cells by use of a thiophene additive.Electrochemistry Communications,2009,11(10):1900-1903.
[153] 许梦清,邢丽丹,李伟善.用于高电压锂离子电池的非水电解液及其制备方法与应用,2010.
[154] von Cresce A,Xu K.Electrolyte Additive in Support of 5 V Li Ion Chemistry.Journal of the Electrochemical Society,2011,158(3):A337-A342.
[155] Nagpure S C,Bhushan B,Babu S S.Multi-Scale Characterization Studies of Aged Li-Ion Large Format Cells for Improved Performance:An Overview.Journal of the Electrochemical Society,2013,160(11):A2111-A2154.
[156] Horiba T.Lithium-Ion Battery Systems.Proceedings of the IEEE,2014,102(6):939-950.