前言
世上没有傻问题
看到本书的标题,也许你会感到既严肃又随意。严肃是因为它指明这是一本面向产品经理的职业书,随意则是由于它的“30问”——为什么是这30个问题?为什么是“问题”而不是“讲解”,比如“30讲”或“30解”?
实际上,比起解答,本书更侧重于提问。
近十年,互联网行业的高速发展令人惊讶,互联网从业者需要不断学习,才能跟得上行业剧变。以解决具体问题为导向的学习是一种行之有效的快速学习法。基于这个思路,本书旨在引导读者提出自己的问题,无论一个问题看上去是精妙还是荒唐,只要它给读者的工作带来了困惑并能够激发读者深入探究的兴趣,那么它就是一个有价值的问题。
一旦明确了问题,解决它便会水到渠成。对书中每一个问题的回答,都是笔者引导读者参与讨论的过程,其中融入了笔者自身的思考和实践,希望读者能够在讨论的基础上,进一步探究部分内容,形成自己的解决方案。
你是产品经理,更是数据产品经理
产品经理不像互联网行业中大多数职位那样存在科班出身的从业者——从如今高校开设的学科中,我们能够轻易地找到与研发工程师、设计师、数据分析师、广告与公关等职位对口的专业,却很难说清哪个专业是以培养产品经理为目标的。这就意味着,与其说产品经理是一个职位,不如说它更是一种责任及一系列思维方式——只要你在以产品经理的方式思考,为产品的结果负责,你就可以担任产品经理。
那么,数据产品经理又是什么呢?总结起来,有如下核心关注点:
· 产品数据。日登、日活、日付费,每天要用哪些数据指标来衡量产品的健康与否?
· 数据产品。数据报表、用户画像、任务调度,是否要通过各种数据门户平台查阅、分析和处理数据呢?
· 数据化运营。以数据驱动产品运营,如何制定可量化的运营策略?如何根据数据评估运营效果并迭代产品?
在如今的智能时代,各行各业都需要数据,正如各行各业都需要产品经理,相信你一定会频繁与上述内容打交道。因此,不知不觉间,你已经在用数据思维做产品了。
当然,我们不应把“数据产品经理”和“数据分析师”混为一谈,虽然二者有一部分重合技能,但前者注重对产品和数据方案整体的把握,而后者更擅长对数据进行挖掘、分析和提炼等专业性探究。
本书适合谁
· 爱学习,需要数据思维的互联网产品经理。
· 专职的数据产品经理,包括负责数据平台的产品经理,以数据为导向的产品经理。
· 希望打造数据产品体系的团队管理者或创业者。
· 想要了解互联网产品和数据思维的各界人士。
只要你乐于提问,并愿意基于书中的兴趣点进一步系统化学习,本书一定能够给你启发。
本书不适合谁
· 只希望从事最基础工作的产品经理,如画原型,写需求文档,与工程师“争吵”。
· 追求“干货”和万能方法论的互联网从业者。
· 认为人际关系和资本才是王道的团队管理者或创业者。
· 不认为数据能够产生价值的人士。
如果你属于上述人群,请不要在本书上浪费时间,利用这些时间去做更有意义的事情吧。
另外,书中讨论的Excel高级技巧、R语言、SQL、人工智能等内容仅限于帮读者建立初步认知,如果你是为深入学习这些内容而来的,请一定不要选择本书,其他相关的专业书籍会更适合你。
关于阅读进度
由于本书最关键的内容在于引导读者提出问题,你可以通过浏览的方式快速地读完整本书,当日后工作遇到问题时再回来翻看对应的内容,不必从一开始就逐字逐句地阅读。因此,笔者建议以每天1~2问的节奏阅读,花至多1个月的时间读完本书。
在阅读的过程中,请注意每一问末尾的进度图(如右图所示),它向你指示了阅读完成度。
每一单元的脉络图则对该单元的关键讨论进行了总结,你可以在本书的彩插中找到它们,也可以扫一扫每一单元末尾的“打卡”二维码,将它们收藏于微信或分享给好友,以便在工作中随时查看。
老套却必要的致谢
感谢那些曾经爱我,现在爱着,未来将爱我的人,他们的支持,让我得以克服各种困难和懒惰,将本书写完。
感谢华中科技大学新闻与信息传播学院张明新、陈少华教授对我的谆谆教诲,以及 QQ 浏览器产品与运营总监刘凌(Lillian)、业务导师符凌霄(Lennox)和陈剑勇(Jarvis)在职场中指导我快速成长,为我指明了本书的选题方向。
感谢我的同事们,与他们共事的经历,是本书内容的源泉。
感谢视源股份(CVTE)王琪峰亲笔作序,以及行业内外各位专家学者倾力推荐,令拙著增光添彩。
感谢电子工业出版社博文视点的郑柳洁和汪达文编辑,以及未曾有幸见面的编辑老师们,他们就是图书的产品经理,辛勤的付出促成了本书的面世。
感谢设计师何积平,包揽了本书全部的设计元素,以惊人的效率让我见识到专业的水准。
亲爱的读者,感谢你激活本书的意义,让知识不再留守于冷冰冰的书本中,也希望得到你的推荐及猛烈而善意的批评,让我们共同进步。