推荐序三
也许你遇到过这样的场景,当你向其他人提及“数据产品经理”或“数据驱动运营”这些概念时,对方可能会问“你是指数据分析师做的事情?”或者“这是不是产品运营需要关心的内容?”在当今大数据时代,你的团队中可能也确实存在数据分析师、数据挖掘工程师这样的专职角色。
实际上,数据相关的工作以移动互联网的发展为节点大致分为三个阶段。
· 第一个阶段,在移动互联网爆发前(2011年之前),产品经理这个角色几乎不承担数据相关的事情(甚至产品经理这个概念才刚刚被引入互联网行业)。数据工作以支撑和辅助产品的功能开发和运营为主,那个时候,只需要安排产品助理兼做一下数据的埋点和收集,再由开发或运维工程师将数据做初步的汇总后提取出来,交由产品团队解读。
· 第二个阶段,移动互联网爆发初期(2011年至2013年),随着智能手机开始普及,一时间涌现出各种各样的App产品,用户数据的维度越来越丰富,使数据规模发生了数量级的增长。数据的重要性逐渐显现,各企业开始建立专门负责数据挖掘和数据分析的顾问团队,这些团队的成员以数据挖掘工程师和数据分析师为主,探索数据决策的各种方向。这些顾问团队虽然很少参与产品的实际规划,但是会给出专业的分析报告和决策建议。
· 第三个阶段,移动互联网高速发展期(2014年至今),移动互联网生态呈现阶段性稳定,各领域的头部产品占据了用户和数据的优势资源,国内互联网巨头整合数据资源跨行业布局大数据,使得数据、产品、用户紧密相连,用户已开始受益于大数据及基于大数据的人工智能技术。由于数据已不再是过去那种孤立的资源,亟须系统化、产品化运作,以数据产品经理、大数据工程师、人工智能工程师为代表的智能型数据团队的价值得到彰显和认可,他们参与到产品研发、运作和维护的各个环节,形成行业—产品—数据一体化的格局。
今天,产品经理对数据把控的必要性主要体现在以下四个方面。
· 主导以数据驱动产品。在阶段性稳定期,无论是产品的技术、体验还是市场均已被探索实践并达到阶段性顶峰。由于数据通常来源于用户最真实的表现,越来越多的互联网企业及其产品团队将目光转向数据,开始了对数据驱动产品的探索。而产品经理便是数据驱动产品的主导人,产品经理与其他角色在产品探索上各司其职,又在产品目标上殊途同归,分工协作拓宽产品发展的路径。
· 产品经理要更具有数据敏感度,并要具备逻辑严谨的表达能力。例如,在向公司决策团队汇报时,产品经理通常要事先通过数据分析得到一些初步的结论和假设,再以精确的表述汇报,而不是以“有一定比例的用户遇到了问题”这种含糊的方式来表达。
· 打造和经营专业的数据产品。数据积累到一定程度能够发挥难以想象的作用,并以产品化、产业化的形态发展。这种态势推动产品建立专业的大数据体系。而数据产品在整个数据体系中起到了不可或缺的作用。产品经理能够结合对数据和用户产品的深刻理解,应用产品的理论和实践,打造并经营与用户产品无缝协作的数据产品,在保证数据兼容性的同时,大幅提升了数据的利用效率。
· 充当产品团队与数据团队的纽带。假如产品团队与数据团队彼此独立,各行其是,无疑既不利于数据对产品的驱动,又无益于公司内部的有效协作。这就需要产品经理从产品团队的视角随时捕捉产品的数据需求,将其转化成可用数据描述的模型,便于数据团队的研究;也需要产品经理从数据团队的视角,找准契合点,将数据方案落实到产品上,发挥数据的价值。
对于国内外知名互联网企业而言,数据思维和数据技能是产品经理的必修课,这会使产品经理与数据分析师有一部分技能重合,但前者注重对数据方案和产品的整体把握,而后者注重对数据的挖掘、分析、提炼的专业探究。在互联网大大小小企业纷纷进行大数据战略布局的当下,数据也被以产品化的形态运作,这就对产品经理的数据素养有了更高的要求。如果你也有志于提升自己的数据思维能力和技能,那么请翻开本书,从提问出发,探索这个精彩的数据世界吧!
华中科技大学新闻与信息传播学院教授、院长