人工智能的3大误解
理解人工智能的第一步也是最重要的一步,就是摒弃你的先入之见。相信大多数读者在此之前,都已经或多或少对人工智能有一些朦胧的见解。然而,这些看法有可能是完全错误的。在继续前进之前,你应该尽可能地放弃这些想法。
举例来说,你或许对“智能”这个词有着某些理解。这种理解可能会让你假设,人工智能与创造这一种类智能的人类智能有所关联,而学者们又把这种智能安插在某些机器中。不过,在本书中你将反复看到,这样的假设实际上误导性非常强。人工智能的研究不断显示出,我们对自己的智能并没有任何科学的理解。而更令人惊奇的是,我们渐渐发现,人类运用自己的智能来解决问题的各种各样的方法,并不是唯一可行的方法,而且通常也不是最佳方案。
我们有充分的理由(将在第3章及第4章中详述)相信,对于人类智能的研究,通常对人工智能来说并无裨益。我们不但缺少对于人类智能大多数细节的科学理解,而且想要在机器中模拟这种级别的智能也超越了科技发展的最高水平。很多人工智能学者干脆选择去研究那些相对简单的生物,比如昆虫,因为在他们看来,人类智能太过复杂,难以给他们的工作带来更多的启发。
另一方面,其他的人工智能学者则在让机器实现某些人类行为的研究中,取得了一些可观的成果。下国际象棋就是一个很好的例子。当然,在人工智能研究刚刚起步的20世纪50年代,国际象棋被视作人类智能行为的一个典型例子。在1997年的国际象棋锦标赛中,超级计算机“深蓝”一举打败人类国际象棋冠军加里·卡斯帕罗夫(Gary Kasparov)。机器下棋更出色的说法受到了广泛的认可。
然而,当我们重新审视细节(第2章),去了解计算机下棋的方式,我们就会看到,它的思维方式与人类棋手的套路有着天壤之别。说计算机比人类更擅长下国际象棋可能会引起争议,不过在这一领域中,“更出色”就意味着胜利。对于一个打败人类世界冠军的下棋软件,我们还能要求更多吗?至少在这一领域,似乎有理由去说,我们找到了比人类更优秀的策略。
而另一类对人工智能的成见来自科幻世界。智能机器、机器人、半机械人等,几乎是所有科幻小说家最爱的主题。然而很不幸,我们从这些小说中获得的内容,同样有着很强的误导性。有时我们不该忘记,科幻小说归根结底仍是小说。它可能时常会给人工智能及其他领域的科学家带来灵感,不过与此同时,它也可能给目前研究中真正发生的事情带来一些错误的认识。这可能会导致读者做出一些错误的假设,比如认为很多远超目前进展的事情已经完成,或者把如今的人工智能想象得与人类更像。本书将会挑战这些假设。
最后一类先入为主的概念来自那些广为流传的有关计算机的传说。这些传说被传播到太多地方,有时甚至是通过了一些计算机科学家之口。因此,想挑战这些传说需要一些勇气,不过这是我们必须要做的。人们常说:“计算机只会做那些我们让它们做的事情。”就像所有好的传说一样,这一句也不乏真实元素。所有计算机都需要精心编码的软件(通常是由人类编写的程序)来进行运转。然而,如果这句话被误读为“计算机能做的事情,都需要依据详细而明确的指令”,那就大错特错了。在本书中,我将向读者介绍一些能够进行预测、有知觉并且在很多方面都超越了其创造者的程序。我们也将听到一些“机器人并不是设计的产物,而是进化的结果”这样的论断。
出于相似的原因,读者还需放弃一种想法,那就是计算机是纯理性的推理机器。人工智能研究者并没有把他们的研究和实验禁锢在智能行为的理性范畴之中。的确,在那些更为理性的领域中,人工智能获得了更大的成功,不过人工智能也的确会让计算机做一些非理性的事情。人工智能研究的一大发现是,智能行为的全部领域,实际上与逻辑推理并无关系。一些不同的方法是有必要的,不过,我们在“让计算机在这些领域运转”方面也取得了一些令人震惊的成功。