Darwin and Modern Science
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

第19章

On the other hand, wherever enduring types have arisen, we find traces of a gradual origin by successive stages, even if, at first sight, their origin may appear to have been sudden. This is the case with SEASONAL DIMORPHISM, the first known cases of which exhibited marked differences between the two generations, the winter and the summer brood. Take for instance the much discussed and studied form Vanessa (Araschnia) levana-prorsa. Here the differences between the two forms are so great and so apparently disconnected, that one might almost believe it to be a sudden mutation, were it not that old transition-stages can be called forth by particular temperatures, and we know other butterflies, as for instance our Garden Whites, in which the differences between the two generations are not nearly so marked; indeed, they are so little apparent that they are scarcely likely to be noticed except by experts. Thus here again there are small initial steps, some of which, indeed, must be regarded as adaptations, such as the green-sprinkled or lightly tinted under-surface which gives them a deceptive resemblance to parsley or to Cardamine leaves.

Even if saltatory variations do occur, we cannot assume that these HAVEEVER LED TO FORMS WHICH ARE CAPABLE OF SURVIVAL UNDER THE CONDITIONS OFWILD LIFE. Experience has shown that in plants which have suddenly varied the power of persistence is diminished. Korschinksky attributes to them weaknesses of organisation in general; "they bloom late, ripen few of their seeds, and show great sensitiveness to cold." These are not the characters which make for success in the struggle for existence.

We must briefly refer here to the views--much discussed in the last decade --of H. de Vries, who believes that the roots of transformation must be sought for in SALTATORY VARIATIONS ARISING FROM INTERNAL CAUSES, and distinguishes such MUTATIONS, as he has called them, from ordinary individual variations, in that they breed true, that is, with strict inbreeding they are handed on pure to the next generation. I have elsewhere endeavoured to point out the weaknesses of this theory ("Vortrage uber Descendenztheorie", Jena, 1904, II. 269. English Translation London, 1904, II. page 317.), and I am the less inclined to return to it here that it now appears (See Poulton, "Essays on Evolution", Oxford, 1908, pages xix-xxii.) that the far-reaching conclusions drawn by de Vries from his observations on the Evening Primrose, Oenothera lamarckiana, rest upon a very insecure foundation. The plant from which de Vries saw numerous "species"--his "mutations"--arise was not, as he assumed, a WILD SPECIESthat had been introduced to Europe from America, but was probably a hybrid form which was first discovered in the Jardin des Plantes in Paris, and which does not appear to exist anywhere in America as a wild species.

This gives a severe shock to the "Mutation theory," for the other ACTUALLYWILD species with which de Vries experimented showed no "mutations" but yielded only negative results.

Thus we come to the conclusion that Darwin ("Origin of Species" (6th edition), pages 176 et seq.) was right in regarding transformations as taking place by minute steps, which, if useful, are augmented in the course of innumerable generations, because their possessors more frequently survive in the struggle for existence.

(b) SELECTION-VALUE OF THE INITIAL STEPS.

Is it possible that the significant deviations which we know as "individual variations" can form the beginning of a process of selection? Can they decide which is to perish and which to survive? To use a phrase of Romanes, can they have SELECTION-VALUE?

Darwin himself answered this question, and brought together many excellent examples to show that differences, apparently insignificant because very small, might be of decisive importance for the life of the possessor. But it is by no means enough to bring forward cases of this kind, for the question is not merely whether finished adaptations have selection-value, but whether the first beginnings of these, and whether the small, I might almost say minimal increments, which have led up from these beginnings to the perfect adaptation, have also had selection-value. To this question even one who, like myself, has been for many years a convinced adherent of the theory of selection, can only reply: WE MUST ASSUME SO, BUT WE CANNOTPROVE IT IN ANY CASE. It is not upon demonstrative evidence that we rely when we champion the doctrine of selection as a scientific truth; we base our argument on quite other grounds. Undoubtedly there are many apparently insignificant features, which can nevertheless be shown to be adaptations--for instance, the thickness of the basin-shaped shell of the limpets that live among the breakers on the shore. There can be no doubt that the thickness of these shells, combined with their flat form, protects the animals from the force of the waves breaking upon them,--but how have they become so thick? What proportion of thickness was sufficient to decide that of two variants of a limpet one should survive, the other be eliminated? We can say nothing more than that we infer from the present state of the shell, that it must have varied in regard to differences in shell-thickness, and that these differences must have had selection-value, --no proof therefore, but an assumption which we must show to be convincing.