产品前线:48位一线互联网产品经理的智慧与实战
上QQ阅读APP看书,第一时间看更新

06
三步轻松做出靠谱需求分析

李美霖

上海贝锐信息科技有限公司产品经理,擅长需求分析、交互设计与理性设计,有较强的市场敏感度,并能从市场和竞品中提炼出产品的特质,为设计和落实提供依据。

喜欢思考:逻辑缜密地思考产品的方向与价值,是个务实主义者;喜欢想象:关注各种艺术表现,从中发现产品的美和内涵;喜欢包容:喜欢让自己的产品能具有包容性,均衡技术与艺术的结合。

精彩观点

认清现象和原因的不同。从证实假设到导出结论的过程中,最重要的就是弄清楚发生问题的原因是什么,但是大多数经营者和企业经理人只看到问题的现象,却看不到产生问题的原因。现象终究只是现象,不是原因,但是大多数人却不了解这种理所当然之事。不找出真正的原因,就别期望解决问题。因此,最重要的是思考在各种现象之中,如何找出真正的原因,决不能在列举了各种现象之后就停止思考。 《思考的技术》,作者大前研一,刘锦秀、谢育容译,中信出版社2010年11月出版。

产品经理总是在面对各种各样的需求,需求分析是面对需求后的第一步,它的重要性在于:分析的深度直接决定了最后方案的好坏。需求分析的本质就是想办法解决问题,在解决问题的过程中,往往存在因为被现象所迷惑,没有找出导致问题的真正原因,从而不能挖掘到更深层次的需求,导致解决方案停留在表面的现象。那么作为产品人,能如何避免这种情况呢?在工作中,我总结出三步轻松做出靠谱需求的方法,下面以实例来做相关说明。

实践案例

最近有这样一个需求。某产品负责人向我们提出:目前他每天需要关注产品线的一些销售数据。该产品线产品分类如右图所示。

目前每天我需要关注的数据如下,希望能整合查看。

❑ 每天/月产品A的销量

❑ 每天/月产品B的销售

❑ 各个年限的销量

❑ 各个级别的销量

❑ 打折、礼品、各种促销活动占比

❑ 新购、续费、升级各种占比

❑ 在之后又有补充:

❑ 用户类别的数量(个人?企业?)

❑ 每个小时,各类用户的购买数量

❑ 用户注册时间(N天前)

第一步:梳理现象——尽可能多地搜集现象,并进行梳理

就像破案一样,为了找出最后的真相,需要先尽可能多地搜集线索。这些线索就对应着现象,真相就是原因。在搜集到线索后,需要进行初步的梳理,以备之后的深入分析。从原始需求可以看出,在这个负责人关注的这些数据中,首先最重要的是关注销量,然后对销量进行更细纬度的查看。关注的数据可分类为以下3种类型:时间、购买产品类型、用户类型,具体数据分类如下表所示。

第二步:多问为什么——从现象追溯到原因,直指需求的根源

到了第二步,我们已经有了很多线索,并进行了初步的梳理,但这些线索都还只是现象,停留在表明,在这个阶段,我们的任务就是从现象追溯到原因,去找寻需求到根源。如何找原因呢?在现象的基础上多问几个为什么,再去找出这些问题的答案。

1)产品负责人为什么需要看销售数据?

2)为什么要关注每时、每天、每月的销量?

3)为什么关注不同年限、各级别、各促销方案的占比?

4)为什么关注用户类型?

对应答案为:

1)产品负责人对产品负责,而产品的销量是KPI考核中的重要部分。

2)首先是总结销量,看是否完成任务;其次是关注销量的变动,每次变动是否有对应的原因,所做的活动有没有效果等;再次看用户购买行为产生的时间有没有规律。

3)看现在销量最多的产品是什么,什么级别与促销方案对我们的用户更有吸引力。

4)看用户类型的占比,以及用户的偏好性,以便针对不同的用户制定有针对性的营销计划。

找出答案后,再一次对答案进行梳理,可以看出需求主要分为以下两方面:

1)对销售数据的总结。

关注销量的变动,每次销量变动是否有对应原因,所做的活动有没有效果。

2)对未来进行的营销方案提供数据支撑。

细分用户,关注细分用户群对哪些产品更有兴趣,更喜欢什么样的促销方案。

第三步:从原因再次出发——真正做出靠谱的需求分析

分析到这里,对于需求的来龙去脉都有了清晰的了解。针对本案例,最后给出的功能列表包括:

1)可按小时/日/月查看销量,从关注数据的变动来考虑,则数据的展示方式不直接用表格,而选用折线图。

2)需要满足对数据更细纬度的交叉查询。

综合以上的分析,可以得出,只是直接的数据展示是不能满足需求的,而需要对数据进行交叉查询,例如可以查询到:

❑ 在产品A-级别1的销量中,各种年限的占比分别是多少,而每种年限中各种用户类型的占比是多少。

❑ 在产品A的销量中,哪种用户最多,而每种用户类型更偏好什么产品的什么级别、什么年限。

3)具体化不确切选项。

在前面所要展示的数据中,有两个数据是无法确切定义的,即销量与用户注册时间(N天前)。

❑ 销量:怎么定义销量,销量是总销售额,还是总成交用户数,还是订单数?一般KPI会以直接的数据来衡量,所以确定为总销售额。后考虑除了总销售额,还应关注成交用户数来确定人均消费,因此把成交用户数也纳入数据项。

❑ 用户注册时间(N天前):N怎么定义,根据用户可能消费的节点,定义为6个时间段:1周(1~7天)、1月(8~30天)、3个月(31~90天)、6个月(91~180天)、1年(181~360天)、一年以上。

4)扩展的需求

负责人想要知道用户类型及偏好,同时公司还有其他产品,那么可以获取到哪些产品拥有多少比例的共同用户,从而使用户角色拥有更丰满的数据,为多条产品线一起营销提供可能性,更可能有在将来挖掘出新的产品机会。

总结分析

在这个案例中,最重要的就是认清现象和原因的不同,不要只看表面上提出的需求,而是要深入分析,这个需求提出的原因是什么,再从原因出发,绝不能在列举了各种现象之后就停止思考。

这更让我想起一个知名的讨论,讨论的主题是“产品需要创造需求还是迎合需求?在汽车出现之前,如果你问用户需要什么,他会回答需要一匹更快的马。”现在再来看这个主题,用户回答需要一匹更快的马,只是现象,而根本的原因是对速度的要求。柯南说:真相只有一个!做产品也是如此,在解决问题时,要注意分析这是现象还是原因,不要浅尝辄止,要深挖,努力发现事实的真相,问题的本质,做出靠谱的需求分析。