更新时间:2024-12-16 16:53:33
封面
版权信息
版权
内容提要
推荐语
前言
引子 小雪求职记
基础篇 数据分析师的锦囊
一、欲善其事先利器:数据分析技能进阶图谱
二、深入业务寻价值:价值源于深度理解场景
三、积跬步以察千里:数据的采集与治理
四、沥尽狂沙方见金:数据的清洗与可视化
五、营运之道无定法:数据分析的核心方法
六、增长践行成于思:数据分析的关键思维
实践篇 数据运营分析十话
卷一 获客
第一话 横看成岭侧成峰:用户画像揭示秘密
1.1 问题:这款推广海报好不好
1.2 概念:用户画像
1.3 工具:Python数据分析编程基础
1.4 实战:哪一类人才是真正的买家
1.5 结论
第二话 远近高低各不同:聚类实现RFM细分
2.1 问题:如何通过细分用户指导运营
2.2 概念:用户细分
2.3 工具:RFM分析和聚类算法
2.4 实战:基于RFM模型的用户细分
2.5 结论
2.6 彩蛋:看看谁是最有价值的用户
第三话 获客成本何其高:回归预测用户LTV
3.1 问题:我能从用户身上赚多少钱
3.2 概念:用户生命周期价值
3.3 工具:回归分析
3.4 实战:预测电商用户的生命周期价值
3.5 结论
3.6 彩蛋:还有哪些机器学习算法
卷二 激活
第四话 百川争流终归海:动态归因优化渠道
4.1 问题:哪个渠道最给力
4.2 概念:渠道分析和归因模型
4.3 工具:马尔可夫链归因模型
4.4 实战:通过马尔可夫链模型来计算渠道价值
4.5 结论
4.6 彩蛋:夏普利值归因
第五话 营销贵在激活时:漏斗模型聚焦转化
5.1 问题:促销活动中的哪个环节需优化
5.2 概念:漏斗和转化率
5.3 工具:Plotly包中的漏斗图
5.4 实战:通过漏斗分析看促销效果
5.5 结论
卷三 留存
第六话 温故知新惜旧客:通过行为分析提升留存
6.1 问题:如何留住江里捞的老用户
6.2 概念:留存与流失
6.3 工具:生存分析工具包和逻辑回归算法
6.4 实战:分析用户的留存和流失
6.5 结论
第七话 千呼万唤求爆款:从内容分析发现价值
7.1 问题:什么样的视频会成为爆款
7.2 概念:产品分析
7.3 工具:自然语言处理
7.4 实战:某网站视频流量、热度和情感属性分析
7.5 结论
7.6 彩蛋:深度学习和循环神经网络RNN
卷四 变现
第八话 劝君更尽一杯酒:通过推荐系统找到好物
8.1 问题:如何从零搭建推荐系统
8.2 概念:相关性与推荐系统
8.3 工具:协同过滤算法
8.4 实战:简单的游戏推荐系统实现
8.5 结论
第九话 君向潇湘我向秦:用A/B测试助力促销
9.1 问题:两个页面,哪个更好
9.2 概念:A/B测试
9.3 工具:统计学知识
9.4 实战:通过A/B测试找到最佳页面
9.5 结论
卷五 自传播循环
第十话 一二三生千万物:裂变驱动增长循环
10.1 问题:哪种裂变方案更有效
10.2 概念:增长黑客和裂变
10.3 工具:增长模型
10.4 实战:用增长实验确定最佳折扣方案
10.5 结论
寄语